
Can Large Language Models Reason About Code?
Changshu Liu

Department of Computer Science
University of Illinois Urbana-Champaign

Illinois, USA
cl144@illinois.edu

Shizhuo Zhang
Department of Computer Science

University of Illinois Urbana-Champaign
Illinois, USA

shizhuo2@illinois.edu

Ali Reza Ibrahimzada
Department of Computer Science

University of Illinois Urbana-Champaign
Illinois, USA

alirezai@illinois.edu

Reyhaneh Jabbarvand
Department of Computer Science

University of Illinois Urbana-Champaign
Illinois, USA

reyhaneh@illinois.edu

Abstract—Large Language Models (LLMs) have been widely
used to automate programming tasks. Their capabilities have
been evaluated by assessing code quality through test execution.
However, as we will show, success in code synthesis does not
imply code reasoning, which is essential to trust LLMs with
tasks that involve program analysis, e.g., test generation and
debugging. This paper introduces CodeMind, a framework
designed to gauge the code reasoning abilities of LLMs through
several inductive reasoning tasks. CodeMind currently supports
three tasks: Independent Execution Reasoning (IER), Dependent
Execution Reasoning (DER), and Specification Reasoning (SR).
The first two evaluate models to predict the execution output of
an arbitrary code or code the model could correctly synthesize.
The third one evaluates LLMs’ abilities to implement the specified
expected behavior. Our extensive evaluation of ten LLMs across
five benchmarks in two different programming languages for
two code generation tasks (code synthesis and translation) using
CodeMind shows that LLMs, to some degree, can explain the
program execution flow, specifically for simple programs and the
ones they can correctly generate. However, their performance
drops for code with higher complexity, non-trivial logical and
arithmetic operators, non-primitive types, and API calls. We
observe that, while correlated, code generation abilities do not
imply code reasoning: ranking LLMs based on test passing can
be very different compared to code reasoning1.

I. INTRODUCTION

Large Language Models (LLMs) have shown emerging
abilities in code generation, specifically when instruction-tuned
or prompted through Chain- or Tree-of-Thoughts (CoT [1] or
ToT [2]) and in-context learning [3], [4]. However, several
studies suggest that LLMs struggle to generalize this ability
to real-world programs [5], [6] or to tasks that require
understanding code logic rather than natural language [7], [8].
This is mainly because LLMs are trained to associate code
synthesis with natural language specifications, i.e., combine
code constructs similar to thousands to millions of examples
they have seen while aligning to the requirements specified
in the natural language. As a result, they intuitively have

1The reasoning of LLMs and humans exhibit fundamental differences due
to the distinct nature of their cognitive processes. Our conclusions on the
extent of code reasoning abilities of LLMs do not imply human-like reasoning

limited code reasoning to generalize to real-world problems or
reliably perform broader program analysis tasks. While testing
can validate the code LLMs generate, relying solely on test
execution without assessing their abilities in code reasoning
can be misleading.

To illustrate how code reasoning tasks better evaluate LLMs’
abilities for coding, Figure 1-a shows a code synthesized
by GPT-3.5 given a natural language specification. The code
constructs corresponding to the concepts specified in natural
language are highlighted with matching colors. Due to the
ambiguity in the natural language, this code returns the smallest
number in the list rather than the number at the index equal to
the value of the smallest number. For a given input [2, 5, 4, 3],
the code returns 2 instead of 4, and the assertion fails.

One way to relieve the inevitable natural language ambiguity
and improve the performance of code generation tasks, e.g.,
code synthesis or translation, is including test data in the
prompt [7], [9]–[12]. Figure 1-b shows the new specification
and corresponding generated code. Executing the new code with
the specified input-output pair (and additional test data) results
in a test pass, implying a level of code reasoning, which we
refer to as Specification Reasoning (SR). However, it is a weak
proxy for code reasoning as it still involves the association of
code and natural language. A stronger level of code reasoning
is following how given inputs to the code evolve into output
through execution, which we call Execution Reasoning (ER).
This task challenges LLMs more in reasoning about code
without natural language cross-reference. Figure 1-c shows the
CoT reasoning of GPT-3.5 in response to the ER task 2. Even
though the model previously generated this correct code itself
(validated through testing), it cannot correctly reason how the
same inputs evolve into output through code execution.

To advance the assessment of LLMs for programming tasks,
this paper introduces CodeMind to enable code reasoning
evaluation. CodeMind formally defines three inductive code

2ER prompts are more complex than what is shown in the illustrative
example.

ar
X

iv
:2

40
2.

09
66

4v
4

 [
cs

.S
E

]
 3

 A
pr

 2
02

4

Generated code by GPT-3.5

def func(lst):

 if not lst:

 return None

 index_of_smallest = lst.index(min(lst))

 result = lst[index_of_smallest]

 return result

assert func([2,5,4,3]) == 4 (2)

Generated code by GPT-3.5

def func(lst):

 if not lst:

 return None

 smallest_index = lst.index(min(lst))

 if 0 <= smallest_index < len(lst): return lst[lst[smallest_index]]

 else: return None

assert func([2,5,4,3]) == 4 assert func([6,1,-1,4]) == None

Prompt 1: write a python program that given a list of numbers,
return the value of number at the index specified by the value of
smallest number in the list.

Prompt 2: write a python program that given a list of numbers,
return the value of number at the index specified by the value of
smallest number in the list. input=[2,5,4,3] returns 4

Prompt 3: Given the input=[2,5,4,3], what would be the output
by the code below?

def func(lst):

 if not lst:

 return None

 smallest_index = lst.index(min(lst))

 if 0 <= smallest_index < len(lst):

return lst[lst[smallest_index]]

 else: return None

CoT Analysis by GPT-3.5:
+ min(lst) finds the minimum value in the list lst.
+ lst.index(min(lst)) finds the index of the minimum value in the list.
+ lst[smallest_index] retrieves the value at the index of minimum value in the list.
+ lst[lst[smallest_index]] retrieves value at the index obtained in previous step.

With the given input = [2, 5, 4, 3]:
+ The minimum value in the list is 2.
+ The index of the minimum value is 0.
+ lst[0] gives us the value at index 0, which is 2.
- [missing to reason about lst[lst[0]]

Code Synthesis Specification Reasoning

Execution Reasoning (a) (b)

(c)

Fig. 1: An example illustrating the importance of evaluating LLMs on code reasoning

reasoning tasks and metrics: Independent Execution Reason-
ing (IER) and Dependent Execution Reasoning (DER) assess
if LLMs can reason about how given inputs evolve to output
for any arbitrary code (IER) or only the code that they correctly
generate (DER). Specification Reasoning (SR) evaluates the
extent to which LLMs can reason and implement the specified
behavior. CodeMind supports code reasoning for two most
common generative tasks: code synthesis—generating code
given natural language specification—and code translation—
generating code given another code in a different programming
language as a specification.

Using CodeMind, we performed a large-scale study to
assess state-of-the-art LLMs for code reasoning. We selected
ten models, including both general-purpose and Code LLMs,
and prompted them for IER, DER, and SR tasks on 5395
programs written in Java and Python. These programs are
from five programming benchmarks, namely HumanEval [13],
MBPP [14], CRUXEval [15] CodeNet [16], and Avatar [17].
We observe that:

(1) LLMs can explain the code statement by statement
and often follow the execution flow. Yet, they fail to reason
about output correctly, and their abilities are limited to simple
programs. Open-source LLMs that have achieved comparable
effectiveness as GPT models in code synthesis are behind
them with a notable gap concerning code reasoning (§IV-A).
In-depth analysis (§IV-D) suggests the root cause to be factors
other than the difference in model size.

(2) LLMs often achieve a higher performance reasoning
about the code (with similar or even higher complexity)
they can correctly synthesize or translate (§IV-B). This is
potentially because synthesis/translation already enforces a

level of inductive reasoning, making the execution reasoning
less challenging.

(3) LLMs, to a limited extent, can reason about test data
in the specification, even if deceptive, and bring that into
solving code synthesis and translation problems. Including test
data helps code synthesis more than translation, likely due to
ambiguity in natural language.

(4) Depending on the complexity and specific properties
of the programs or programming language, there could be a
(negative) negligible to no correlation between the ranking
of models based on code synthesis/translation—generating
a code that passes all tests—and code execution reasoning
performance (§IV-B). This necessitates CodeMind tasks and
metrics to complement the evaluation of LLMs for code.

(5) Nested code constructs, complex conditional predicates
and loop conditions, the non-trivial combination of arithmetic
and logic operators, and API invocations can significantly
challenge LLMs for code reasoning (§IV-D). Our experiments
show that simplifying the code logic, e.g., unrolling the loops
to eliminate the necessity of reasoning about loop conditions,
can increase the code reasoning performance.

Our contributions include (1) CodeMind framework for code
reasoning, which is open-source [18] and is designed so that
other researchers can add reasoning tasks to it. (2) a large-scale
evaluation of LLMs for code reasoning using CodeMind for
two code generation tasks; and (3) a comprehensive, in-depth
analysis of results that offers a catalog of root causes negatively
impacting the abilities of LLMs for code reasoning 3.

3Mechanistic interpretability of LLMs to investigate how underlying layers
and properties of models result in such observation is a separate research and
out of the scope of this work.

2

II. CODEMIND

Program specification (either in natural language, code, or
mathematical expressions) defines the logic that the code should
implement. Formally speaking, it defines a function S : SI →
SO, where SI is a set of all possible inputs to the program
and SO is a set of corresponding outputs. A code synthesized
based on the implementation is also a function C : CI → CO.
We define a program to be correct with respect to specification
if it satisfies all the following conditions:

CI ⊆ SI , CO ⊆ SO, ∀i ∈ CI , C(i) = S(i)

This entails the model to reason about how inputs evolve to
a given output through implementation (execution reasoning),
and implement the code such that it generates correct output
for the given inputs (specification reasoning).

A. Execution Reasoning

Considering the formalization mentioned above, we define
two execution reasoning tasks as follows.
Definition 1: Independent Execution Reasoning (IER). Given
a program C : CI → CO and set of inputs Î = {i|i ∈ CI},
LLM L can correctly reason about code execution if ô = C(Î),
where ô = L(Î) is the predicted output by L. Note that in
this task, we do not deal with specification, so we can assess
LLMs for any arbitrary code with ground-truth pairs of ⟨Î , ô⟩.

IER evaluates LLMs for general inductive code reasoning,
which requires knowing different code constructs, arithmetic
and logic operations, and programming language properties.
However, even for human developers, reasoning about their
developed code is easier than any arbitrary code. Furthermore,
as a self-consistency [8] measurement, LLMs should be able
to reason about the code they can correctly synthesize. This
demands the following execution reasoning task:
Definition 2: Dependent Execution Reasoning (DER). Given
a specification S : SI → SO, a program C : CI → CO

generated by LLM L, and set of inputs Î = {i|i ∈ CI , C(i) =
S(i)}, LLM L can correctly reason about code execution if
ô = C(Î), where ô = L(Î) is the predicted output by L. The
assumption here is that when LLM L generates code C that
passes the test ⟨Î , ô⟩, it should be able to predict ô correctly.

B. Specification Reasoning

In addition to execution reasoning, a model should un-
derstand specifications to synthesize the correct code. This
specification can be given through natural language (in code
synthesis) or programming language (in code translation). To
evaluate if LLMs truly reason about the specification and not
generate a probabilistic guess, we measure how including test
data in the specification helps the model generate the correct
code. Regardless of the type of specification, we define the
specification reasoning task as follows.
Definition 3: Specification Reasoning (SR). Given a
specification S : SI → SO in natural language or pro-
gramming language, an arbitrary test t = ⟨i, o⟩, where
i ∈ SI , o ∈ SO, S(i) = o, program CS : CSI

→ CSO

(generated by LLM L given the specification S), and program

CS+t : CS+tI → CS+tO (generated by LLM L given the
specification S and t), the LLM can correctly reason about
specification if CS+t(i) = o & CS(i) ̸= o. In other words,
LLM L should be able to pass a test with ⟨i, o⟩ when they
are explicitly specified in the prompt but fail it otherwise.
This shows that the model has not just overfitted into the
specification but can reason about it.

C. Evaluating Code Reasoning

1) Evaluating Execution Reasoning: We measure the per-
formance of a model L in execution reasoning for a given
program C with inputs Î using the Execution Reasoning Score
(SER) as below:

SER(L,C, Î) =

{
1, if L(Î) = C(Î)

0, otherwise
(1)

which is 1 if the model can correctly predict the expected
output and 0 otherwise. Given that IER is measured on any
arbitrary code, SIER = SER. For DER, however, the reasoning
is conditioned to the code correctness (Definition 2). As a result,
we define SDER as below:

SDER(L,C, Î) = Pass⟨L,C,Î⟩ × SER(L,C, Î) (2)

where Pass⟨L,C,Î⟩ denotes test result: 1 if the generated code
C by the LLM L passes the tests with inputs Î and 0, otherwise.
We also introduce the Execution Reasoning Rate (RER) metric,
a collective metric that measures how much a given LLM L can
reason about multiple programs in a benchmark. We calculate
RER for a set of m programs in benchmark B as:

RER(L,B) =

m∑
i=1

JSER(L,Ci ∈ B) = 1K

m
(3)

where JK denote the Iverson bracket: it returns 1 if the condition
in square brackets is satisfied and 0 otherwise. We compute
RIER = RER and RDER as:

RDER(L,B) =

m∑
i=1

JSDER(L,Ci ∈ B, Îi) = 1K

m
(4)

2) Evaluating Specification Reasoning: We measure the
performance of a model L in specification reasoning using
SSR as below:

SSR(L, S, t) = (1− Pass⟨L,CS ,t⟩)× Pass⟨L,CS+t,t⟩ (5)

SSR is a conservative metric that rules out cases where LLMs
only generate a correct code based on the natural language
or programming language specification. However, given the
possibility of data contamination, we need such a conservative
metric as a lower bound for the reasoning abilities of LLMs.
Similar to execution reasoning, we calculate the collective RSR

values for a set of m programs in benchmark B as:

RSR(L,B) =

m∑
i=1

JSSR(L, Si ∈ B, ti) = 1K

m
(6)

3

TABLE I: Performance of subject LLMs (RIER) on IER task through CoT prompting. We highlight the top three best-performing
models with red (1st), green (2nd), and blue (3rd).

Dataset Programming
Language # Subjects General LLMs Code LLMs

GPT-4 GPT-3.5 Llama 2 Mistral CodeLlama DeepSeekCoder Magicoder StarCoder StarCoder2 WizardCoder
MBPP Python 408 80.88% 71.32% 45.59% 31.37% 42.40% 57.84% 59.80% 43.63% 57.84% 46.08%

HumanEval Python 162 79.01% 64.20% 30.86% 32.72% 45.06% 41.98% 52.47% 38.89% 46.30% 40.12%
CRUXEval Python 800 80.50% 65.13% 25.38% 34.13% 37.75% 44.38% 46.50% 35.50% 52.00% 35.88%

CodeNet Python 1914 70.43% 49.06% 18.97% 17.35% 27.95% 26.65% 33.28% 26.28% 43.22% 24.87%
Java 1939 71.17% 51.93% 23.99% 18.15% 28.52% 32.13% 36.46% 29.34% 32.50% 29.35%

Avatar Python 86 52.33% 39.53% 24.42% 16.28% 23.26% 18.60% 24.42% 19.77% 32.56% 24.42%
Java 86 48.84% 34.88% 23.26% 11.63% 27.91% 23.26% 24.42% 13.95% 27.91% 13.95%

Total Java and Python 5395 72.60% 54.24% 24.26% 21.54% 30.40% 33.85% 38.68% 30.14% 40.95% 29.99%

0
5

10
15
20

CC

CodeNet
(Java)

CodeNet
(Python)

Avatar
(Java)

Avatar
(Python)

HumanEval MBPP CruxEval0
20
40
60
80

100

Lo
C

Fig. 2: Complexity distribution of the subject programs in
terms of Cyclomatic Complexity (CC) and Line of Code (LoC)

III. EXPERIMENTAL SETUP

Our study includes ten LLMs and 5395 programs in Java
and Python from five programming datasets. We explain the
details of LLMs and program selection below.

Subject LLMs. We chose ten pre-trained or instruction-
tuned models, covering both general-purpose and Code LLMs.
Our choice was limited to computing resources, so we selected
models with less than 20B parameters that outperform the
rest for programming tasks. Our subject LLMs are GPT-
4 [19], GPT-3.5 [20], Llama 2 (13B) [21], Mistral [22],
CodeLlama (13B, instruction-tuned) [23], StarCoder (15.5B)
[24], StarCoder 2 (15B), WizardCoder (15B, instruction-tuned)
[25], Magicoder (7B) [26] (instruction-tuned), DeepSeek-
Coder (6.7B) [27]. We followed the best practices and cus-
tomized the prompt templates per each model (all prompts are
publicly available for further investigation [18]). Except for
the GPT models, we set the temperature to zero to ensure the
reproducibility of the results. Our code is open-source to users
for using CodeMind for other models and temperatures.

Subject Programs. Our criteria for selecting subject pro-
grams were the existence of test data (inputs and corresponding
expected output) and implementations of the same program
in multiple programming languages (to investigate its impact
on code reasoning). From several existing benchmarks [5],
[6], [13]–[17], [28]–[32], we chose the programs in Hu-
manEval [13], MBPP [14], CodeNet [16], Avatar [17], and
CRUXEval [15]. We chose Java and Python versions of the
programs as they are more prominently used programming
languages. HumanEval and MBPP are well-known benchmarks
for code synthesis. CodeNet and Avatar are code translation

0.00

0.20

0.40

0.60

0.80

G
PT
-4

G
PT
-3
.5

St
ar
Co
de
r2

M
ag
ic
od
er

D
ee
pS
ee
kC
od
er

G
PT
-4

G
PT
-3
.5

St
ar
Co
de
r2

M
ag
ic
od
er

D
ee
pS
ee
kC
od
er

G
PT
-4

G
PT
-3
.5

St
ar
Co
de
r2

M
ag
ic
od
er

D
ee
pS
ee
kC
od
er

G
PT
-4

G
PT
-3
.5

St
ar
Co
de
r2

M
ag
ic
od
er

D
ee
pS
ee
kC
od
er

G
PT
-4

G
PT
-3
.5

St
ar
Co
de
r2

M
ag
ic
od
er

D
ee
pS
ee
kC
od
er

MBPP HumanEval CRUXEval CodeNet Avatar

CoT direct answering!!"#

Fig. 3: Comparison in IER performance through CoT and direct
answering prompting styles for five best-performing LLMs

benchmarks. CRUXEval is a benchmark of relatively simple
Python programs generated by CodeLlama (34B) to evaluate
input prediction and output prediction of LLMs. Since the
code in CodeNet and Avatar takes inputs interactively from
the console, we only consider those with single-line input to
eliminate the difficulty of understanding the input for LLMs
and its impact on the code reasoning.

Figure 2 shows the complexity distribution of the programs
in terms of Cyclomatic Complexity (CC) [33], and Lines of
Code (LoC). CC measures the independent execution paths
in the program control flow graph (CFG). We calculate CC
as CC = E − N + 2P , where E and N are the number
of edges and nodes in the CFG, respectively, and P is the
number of methods when we measure CC in for class. For
code reasoning, the higher the number of independent paths,
the more challenging it is for the model to succeed by chance.

IV. RESULTS AND ANALYSIS

In this section, we evaluate LLMs’ performance in IER
(RQ1), DER (RQ2), and SR (RQ3), and investigate possible
factors affecting their reasoning on code execution (RQ4).

A. RQ1. LLMs’ Performance in IER

To evaluate the performance of LLMs on the IER task,
we promoted them under two settings: direct answering and
CoT. For direct answering, we prompted each model to predict
the output for the given input(s). Under the CoT setup, we
first instruct the model to simulate the execution step by step
and reason about the output value after the execution of each
statement. We then ask it to predict the output for the given
input at the end of execution. In both settings, the prompt

4

contains one in-context example for two purposes: introducing
the IER task and instructing the response formatting. Details
about CoT and direct answering prompts can be found in our
artifact website [18]. We set the temperature to 0 for the sake
of reproducibility of our results.

Given that IER only requires an arbitrary code and cor-
responding ground-truth pair of ⟨Î , ô⟩ (§II-A), we prompted
the LLMs using all 5395 subject programs in this experiment.
Table I and Figure 3 4 show the result of this experiment through
CoT and direct-answering prompting. GPT models outperform
others on the IER task, with large margins of 31.65% (GPT-
4) and 13.29% (GPT-3.5) from the best open-source model,
StarCoder 2. Detailed observations include:
• On CodeNet and Avatar with equivalent logic implemented

in two programming languages, we observe no persistent
gain or drop in RIER from one language to another across
studied LLMs. One-tail t-tests over the EIER values show
no statically significant dominance for any programming
language (p-value=0.3 for Python dominance hypothesis and
p-value=0.7 for Java dominance hypothesis with α=0.05).

• Moving down in the table, the RIER values drop, i.e.,
execution reasoning on CodeNet and Avatar programs is
harder, compared to MBPP, HumanEval, and CRUXEval.
One potential reason is the varying complexity between
the datasets and a strong negative correlation (measured by
Spearman’s Rank Order Correlation (ROC) [34]) between
CC and RIER values (Figure 4). At the same time, some
models achieve a lower performance on CRUXEval com-
pared to HumanEval, whose programs are more complex
regarding both LoC and CC. Also, despite having similar CC
distribution, models struggle more on the Avatar compared to
CodeNet. This entails a better understanding of what factors
other than CC impact the RIER performance of the models
(§IV-D). In other words, the notion of program complexity
for LLMs could be different and, thereby, should be measured
differently than classic complexity metrics.

• Compared to direct answering, CoT-style prompting improves
the performance of LLMs on IER by 5.07% on average
across all the benchmarks and LLMs. GPT models benefit
more from CoT, likely due to their better and more rigorous
alignment in thinking step by step. They also benefit from
the natural language explanation they produce as feedback
for the next step [19].

B. RQ2. LLMs’ Performance in DER

We seek to address the critical question of how effectively
the model can correctly reason about the correct programs
it has generated through code synthesis or translation. This
requires us to align code synthesis/translation and reasoning
tasks. DER evaluation consists of three steps: (1) following the
best practices, CodeMind prompts LLMs for code synthesis
or translation; (2) it executes the generated program against
existing tests; and (3) for the programs with tests pass,

4The comparison between CoT and direct-answering prompting styles for
all the models is available on the artifact website [18].

it prompts the model using CoT style for code execution
reasoning using one of the test inputs.

We performed code synthesis on MBPP and HumanEval, as
the other three datasets are not designed for code synthesis and
lack proper natural language specifications. For code translation,
we used CodeNet and Avatar, as they have ground-truth
translations in both Java and Python programming languages.
Furthermore, their test data can be reused to validate the code
generated in both languages without inaccuracies potentially
involved in test translation [7]. We excluded Llama 2 from this
experiment as we could not reproduce their code synthesis
results. We also removed the comments from the LLM-
generated codes to ensure they do not impact the code reasoning.
Similar to IER, we set the temperature to zero to account
for the non-determinism and reproducibility of the results.
Consequently, our synthesis and translation results might be
different from existing leaderboards or published research5.

Tables II-III present the results of DER on code synthesis and
translation. In Table II, Synthesis rows show the percentage of
programs in each dataset that models correctly synthesized, i.e.,
generated code passed all existing tests. In Table III, Translation
rows show the percentage of programs in each dataset for a
programming language pair that models were about to correctly
translate, i.e., generated code passed all existing tests. The
Reasoning rows in these two tables demonstrate the RDER

values (Equation 4). GPT models still outperform open-source
models on the DER task, with a margin of 17.03% (GPT-4)
and 12.50% (GPT-3.5) in code synthesis and 27.37% (GPT-
4) and 13.55% (GPT-3.5) in code translation, from the best
open-source model.

DER depends on successful code generation, causing
different values for the denominator of Equation 4 across
models. To ensure this does not threaten the validity of our
conclusions, we also computed R′

DER on the overlap between
correctly generated code across all LLMs. In code translation,
we excluded StarCoder and WizardCoder due to their poor
performance. While R′

DER values are higher than RDER due
to a smaller denominator, the ranking between the models in
code reasoning remains almost the same.

Models achieve higher RDER compared to RIER (from
Table I) in both synthesis (7.51% higher) and translation
(10.28% higher). We performed another controlled experiment
and calculated R′

IER, accumulated on SIER of the ground-truth
code for the programs that LLMs achieved SDER = 1. New
experiments show that, except in a few cases, the RDER values
are still higher than R′

IER, but with a lower improvement of
1.47% for synthesis and 6.32% for translation.

Before concluding that the models are more competent in
execution reasoning when evaluated on the programs they
correctly generate, we investigated whether LLM-generated
programs are similar to original ground-truth codes in IER.
Figure 5 shows the CC distribution of the programs in MBPP,
HumanEval, CodeNet, and Avatar, compared to that generated

5For translation task, our studied subject programs (based on inclusion
criteria mentioned in §III) is different from [7], which also contributes to the
potential difference.

5

TABLE II: Performance of subject LLMs on DER task through CoT prompting for code synthesis. We highlight the top three
best-performing models with red (1st), green (2nd), and blue (3rd).

Dataset # Subjects Task General LLMs Code LLMs
GPT-4 GPT-3.5 Mistral CodeLlama DeepSeekCoder Magicoder StarCoder StarCoder 2 WizardCoder

MBPP 408 Synthesis 86.52% 80.39% 43.36% 56.86% 72.30% 70.34% 44.85% 61.12% 61.03%
Reasoning 82.62% 79.20% 43.50% 43.53% 69.39% 69.34% 56.83% 63.49% 48.19%

93 R′
DER 90.23% 84.95% 46.24% 49.46% 75.27% 78.49% 60.22% 68.81% 65.59%

RDER −RIER 1.74 7.88 11.89 1.13 5.15 9.54 13.20 5.65 2.11
RDER −R′

IER 1.94 −0.05 ↓ 3.41 −3.01 ↓ 1.08 6.17 3.31 7.23 −6.68 ↓

HumanEval 162 Synthesis 79.63% 69.75% 29.94% 43.11% 72.46% 70.37% 41.98% 45.06% 51.50%
Reasoning 81.40% 74.63% 34.12% 35.09% 54.55% 57.58% 58.97% 45.45% 59.50%

47 R′
DER 85.10% 80.84% 29.79% 40.42% 57.45% 55.32% 48.45% 61.29% 59.57%

RDER −RIER 0.64 10.43 1.4 9.97 ↓ 12.57 5.09 9.56 0.85 19.38
RDER −R′

IER 0.98 2.20 −2.09 ↓ −7.71 ↓ 9.87 0.65 2.85 3.32 2.39

TABLE III: Performance of subject LLMs on DER task through CoT prompting for code translation. We highlight the top three
best-performing models with red (1st), green (2nd), and blue (3rd).

Dataset # Subjects Task General LLMs Code LLMs
GPT-4 GPT-3.5 Mistral CodeLlama DeepSeekCoder Magicoder StarCoder StarCoder 2 WizardCoder

Avatar 86 Translation(Python → Java) 55.81% 51.16% 22.09% 36.05% 52.33% 50.00% 23.26% 60.47% 39.53%
Reasoning 72.92% 59.09% 21.05% 29.03% 35.56% 37.21% 20.59% 37.50% 20.59%

12 R′
DER 75% 66.67% 33.33% 16.67% 41.67% 41.67% - 50% -

RDER −RIER 24.08 24.21 9.42 1.12 12.30 12.79 6.64 9.59 6.64
RDER −R′

IER 22.92 18.47 13.05 −18.54 ↓ 1.00 9.79 4.68 2.42 0.59

Avatar 86 Translation(Java → Python) 56.98% 68.60% 30.23% 58.14% 55.81% 65.12% 39.53% 18.60% 2.33%
Reasoning 59.18% 49.15% 15.38% 22.00% 25.00% 28.57% 30.00% 40.38% 0%

6 R′
DER 83.33% 50% 50% 50% 33.33% 66.67% - 66.67% -

RDER −RIER 6.85 9.62 3.75 1.26 6.40 4.15 10.23 7.82 24.42
RDER −R′

IER −0.14 ↓ 1.01 20.23 0.96 −1.78 ↓ 5.98 7.27 15.38 0

CodeNet 691 Translation(Python → Java) 74.85% 70.32% 35.13% 45.18% 69.59% 69.44% 47.51% 26.02% 55.41%
Reasoning 82.03% 64.24% 41.73% 45.81% 30.72% 42.11% 37.23% 38.76% 41.42%

60 R′
DER 96.67% 68.33% 35.00% 55.00% 16.17% 43.33% - 46.67% -

RDER −RIER 10.86 15.18 23.58 17.29 1.41 5.65 7.89 6.26 12.07
RDER −R′

IER 4.30 5.61 8.66 5.68 −3.31 ↓ 11.26 −0.62 ↓ −1.13 ↓ 6.06

CodeNet 691 Translation(Java → Python) 51.66% 52.53% 24.46% 37.05% 44.28% 45.73% 6.95% 38.78% 2.03%
Reasoning 73.67% 60.06% 26.63% 40.56% 35.62 % 47.46% 40.82% 54.65% 21.43%

58 R′
DER 91.38% 74.17% 27.59% 43.10% 41.38% 56.90% - 62.07% −

RDER −RIER 3.24 11.00 9.28 12.61 8.97 14.18 14.54 11.43 3.44
RDER −R′

IER −0.28 ↓ 3.31 −3.55 ↓ 3.59 −6.54 ↓ 3.16 3.32 4.28 −21.52 ↓

GPT-4
ρ = -0.879

GPT-3.5
ρ = -0.842

StarCoder2
ρ = -0.851

Magicoder
ρ = -0.648

DeepSeekCoder
ρ = -0.879

GPT-4
ρ = -0.915

GPT-3
ρ = -0.830

StarCoder2
ρ = -0.467

Magicoder
ρ = -0.867

DeepSeekCoder
ρ = -0.685

R I
ER

RIER

Fig. 4: Impact of CC on the IER performance of LLMs. The ρ symbol denotes the Person’s ROC coefficient

by subject LLMs. We can observe that the synthesized/trans-
lated code, if not more complex, is no less than the ground-truth
code in these datasets. CC is only a proxy, and other factors
may impact the reasoning of models. However, a consistent
and intuitive negative correlation between reasoning abilities
and CC across LLMs increases its impact size. Consequently,
we confirm that models reason better on code they correctly
generate. However, there is still a considerable gap between
the LLM’s code synthesis and reasoning abilities, specifically
on open-source models.

Given that code generation and reasoning are unified in DER,
we first computed the Spearman’s ROC between the rank of
models based on their performance in synthesis/translation
and reasoning for each dataset. The results show a strong

positive correlation on MBPP (ρ = 0.79), a negligible negative
correlation on HumanEval (ρ = −0.11), strong correlation on
CodeNet (Java to Python ρ = 0.54), weak negative correlation
on CodeNet (Python to Java ρ = −0.25), negligible negative
correlation on Avatar (Java to Python ρ = −0.18), and strong
correlation on Avatar (Python to Java ρ = 0.59).

These results communicate a strong message: the ranking of
LLMs based on their code generation abilities and test passes
could be different from that based on code reasoning. Models
may overfit widely used datasets such as HumanEval, giving a
false promise on the abilities of LLMs for programming. This
necessitates a framework such as CodeMind to promote other
evaluation aspects of Code LLMs as well as the need for more
diverse and contamination-free evaluation datasets.

6

TABLE IV: Performance of LLMs on SR task for code synthesis. ↑ indicates the improvement from No Test to With Test.

Dataset Setting General LLMs Code LLMs
GPT-4 GPT-3.5 Mistral CodeLlama DeepSeekCoder Magicoder StarCoder StarCoder 2 WizardCoder

MBPP
With Test 90.69% ↑ 85.05% ↑ 50.74% ↑ 63.73% ↑ 78.68% ↑ 75.25% ↑ 51.47% ↑ 66.98% ↑ 67.89% ↑
No Test 72.13% 78.87% 48.28% 53.68% 67.65% 69.61% 41.67% 54.80% 52.21%

Misleading Test 14.22% 12.99% 8.58% 10.54% 12.01% 9.30% 10.78% 11.52% 12.25%

HumanEval
With Test 91.98% ↑ 74.07% ↑ 57.41% ↑ 70.37% ↑ 87.04% ↑ 81.48% ↑ 56.17% ↑ 58.64% ↑ 76.54%
No Test 88.27% 70.37% 54.32% 65.43% 82.10% 80.86% 38.89% 41.46% 76.54 %

Misleading Test 17.28% 16.67% 9.58% 11.98% 12.96% 17.90% 15.43% 12.96% 17.28%

TABLE V: Performance of LLMs on SR task for code translation. ↑ indicates the improvement from No Test to With Test.

Dataset Task Setting General LLMs Code LLMs
GPT-4 GPT-3 Mistral CodeLlama DeepSeekCoder Magicoder StarCoder StarCoder2 WizardCoder

Avatar

Python → Java
With Test 78.75% ↑ 75.00%↑ 35.00% 45.00%↑ 78.75%↑ 70.00%↑ 53.75%↑ 43.75%↑ 55.00%
No Test 68.60% 62.79% 29.07% 43.02% 65.12% 63.95% 51.16% 23.26% 46.51%

Misleading Test 4.65% 3.49% 2.33% 2.33% 3.49% 3.49% 3.49% 1.16% 3.49%

Java → Python
With Test 82.72%↑ 88.89%↑ 49.38% ↑ 64.20% 77.78%↑ 86.42%↑ 64.20%↑ 74.07%↑ 29.63%↑
No Test 62.79% 74.42% 34.88% 66.28% 61.63% 72.09% 25.58% 66.28% 3.49%

Misleading Test 4.65% 1.16% 1.16% 2.33% 2.33% 3.49% 2.33% 2.33% 0%

CodeNet

Python → Java
With Test 72.70% 74.71%↑ 41.67% ↑ 45.91%↑ 72.51%↑ 61.11% 48.39%↑ 47.81%↑ 56.14% ↑
No Test 74.85% 70.32% 37.13% 45.18% 69.59% 69.44% 47.51% 26.02% 55.41%

Misleading Test 4.63% 3.62% 2.32% 2.02% 3.18% 3.04% 2.75% 2.32% 5.20%

Java → Python
With Test 82.05%↑ 74.38%↑ 34.44% ↑ 37.19%↑ 60.20%↑ 62.52%↑ 36.47%↑ 53.98%↑ 10.13%↑
No Test 51.66% 52.53% 24.46% 37.05% 44.28% 45.73% 6.95% 38.78% 2.03%

Misleading Test 4.49% 4.20% 1.45% 2.17% 3.47% 4.05% 0% 3.62% 0.14%

Original
GPT-4

GPT-3.5
Mistral

CodeLlama

DeepSeek

MagicCoder

StarCoder

StarCoder2

WizardCoder

M
B
PP

H
Ev

al

0
10
20
30
40
50

0
10
20
30
40
50

0

10

20

5

15

0

10

20

5

15

Py
th
on

Ja
va

C
C

Fig. 5: CC distribution of the programs generated by LLMs
(synthesized or translated) compared to the original programs
in the HumanEval, MBPP, CodeNet, and Avatar (Java and
Python samples from CodeNet and Avatar are aggregated)

C. RQ3. LLMs’ Performance in SR

Specification Reasoning (SR) offers a novel perspective in un-
derstanding the code generation process of LLMs, particularly
about how they leverage input-output pairs in the specifications
for code generation. To evaluate the abilities of LLMs for SR,
we prompted LLMs for code synthesis and translation under
the following three settings:

(1) Natural language specification with one ground-truth
input-output (With Test). Under this setting, we randomly select
and add one of the existing tests to the specification. We validate
the synthesized code using only this test.

(2) Natural language specification with no input-output (No
Test). We remove the test added to the specification in the
previous setting and re-prompt LLMs for code generation. We
validate the synthesized code using only the test from the

previous setting. Intuitively, if including test data helps LLMs
in code synthesis, we observe a drop in LLMs’ performance.

(3) Natural language specification with misleading input-
output (Misleading Test). We mutate the expected output of the
test from the first setting and add it to the specification. We
validate the synthesized code using the mutated test.
The mutation changes the expected output to a value that does
not align with the specification. For example, if the expected
output is True , mutation changes it to False . Similarly,
if the expected output is a positive integer, we mutate it to a
negative one with a significant difference. Compared to the
With Test example, passing on the misleading test is stronger
evidence that models can reason about the test data in the
specification and incorporate it into code generation.

Similar to §IV-B, we used MBPP/HumanEval6 for code
synthesis and Avatar/CodeNet for code translation. The results
in Table IV show that the performance of LLMs with test data
in their specification is higher in both code synthesis (8.17%)
and translation (11.24%). The RSR (Equation 6 values for code
synthesis (0.37) and translation (0.14) suggest that among the
problems that LLMs could not generate a correct code given
the specification with no test, 37% and 14% can pass after
adding the tests in the specification. Introducing deceptive test
information surprisingly leads to test passes (13.01% in code
synthesis and 2.79% in code translation, on average). Code
synthesis is seemingly more attentive to misleading tests than
code translation. We speculate this to be due to ambiguity in
natural language compared to code, making LLMs generate a
different code in the presence of misleading tests. These results
show that LLMs, although to a limited extent, consider the test
data in the specification during code generation.

D. RQ4. Factors Impacting LLMs’ Code Execution Reasoning
We further analyzed the IER results, which evaluate the

general ability of LLMs in code reasoning. In the first step,

6HumanEval specification contains some test data by default. We have used
a pre-processed version of this dataset in all our experiments.

7

NL

NI

B

W

F

I

NL

NII

B

W

F

NL

NI

B

W

F

I

NL

NI

B

TW

F

W

NL

NI

B

W

F

I

NL
NI

B

S

T
W

F

I
NL

NI

B

TW

F

I

MBPP HumanEval CRUXEval CodeNet (Py) Avatar (Py) CodeNet (Java) Avatar (Java)

Fig. 6: IER performance of top five best-performing LLMs on programs clustered per specific code constructs across all datasets.
We abbreviate the tags with B (Basic), F (For), I (If), NI (Nested If), NL (Nested Loop), S (Switch), T (Try), and W (While)

TABLE VI: Impact of unrolled loops on the performance of LLMs on IER task.

Language #Subjects Setting GPT-4 GPT-3 Llama2 Mistral CodeLlama DeepSeekCoder Magicoder StarCoder StarCoder2 WizardCoder

Python 1366 Loops 74.01% 51.45% 21.13% 18.59% 28.23% 31.41% 36.58% 25.90% 28.70% 28.26%
Unrolled Loops 78.77% 57.10% 22.92% 21.89% 32.65% 35.29% 41.43% 30.23% 31.48% 30.64%

Java 867 Loops 66.21% 44.75% 13.26% 16.38% 26.18% 29.87% 35.18% 25.84% 29.76% 25.49%
Unrolled Loops 72.55% 49.25% 16.15% 17.19% 28.71% 34.14% 38.87% 28.84% 34.71% 28.95%

we wanted to see if LLMs know how different code constructs
work. Without knowing the logic of each code construct,
reasoning about code execution is impossible. To that end, we
tagged each of 5395 programs based on code constructs used in
their implementation with the following labels: For, While, If,
Try, Switch, Nested Loop, Nested If, and Basic. A program
tagged with a Basic label has no particular code construct.
Next, we clustered the programs per tag and aggregated SIER

values of LLMs for programs in each cluster. Figure 6 shows
the results of this analysis for the top five best-performing
LLMs (results for all models are available at [18]). We can
observe that models handle conditional statements better than
recursion, except for Try-Catch/Except statements. Furthermore,
the RIER values (aggregated SIER values for programs)
notably drop when it comes to nested constructs.

1) Impact of Loop Properties: Given that models struggle
the most with recurring constructs, we focused the programs
with For, While, and Nested Loop tags at the next step. We
manually investigated 2862 programs with loops and identified
the following common factors impacting the abilities of LLMs
to reason about loops.

• Loop Control Condition. Without knowing the precise
number of iterations, it is impossible to predict the ex-
ecution output correctly. In the majority of failed IER
cases, the loop control conditions are either complex
expressions, e.g., c<=(F-100*A*a-100*B*b)/(C) or
val%(long)Math.pow(div,count)==0 , or if simple,

e.g., i<ff.length , require reasoning about variable values
before the loop.
To confirm the importance of loop control conditions,
we unrolled loops using the actual execution information
obtained from Java and Python debugger. Unrolling loops
involves repeating the loop body, i.e., statements inside the
loop, for the number of loop iterations, depending on the
test input. After unrolling the loops, we repeated the IER
experiment to calculate RIER values. We excluded 3162

programs from RQ1, as loop unrolling caused their lengths
to exceed the context window of subject LLMs. The results of
this experiment (Table VI) on the remaining 2233 programs
show unrolling loops improve the IER performance of LLMs
by 4.23% on average.

• Loop Length. In many cases, LLMs struggled to keep track
of data flow after a few loop iterations and predicted an
incorrect output for the entire execution. The moderate to
strong negative correlation between RIER values and the
loop length demonstrated in Figure 7 further confirms the
inverse impact of loop length on the code execution reasoning,
i.e., RIER decreases as the loop length increases.

• Loop Body. The complexity of the code inside the loop is
also important for correct output prediction. We observed
several instances where LLMs correctly realized the number
of iterations for a loop with a short length but could not
predict the output due to a mistake in predicting variable
values local to the loop.
In the example below (p02994 from CodeNet-Java), the loop
condition is simple. CodeLlama can correctly reason about
the number of loop iterations but fails to calculate the values
in the diff array, resulting in a wrong output. Magicoder
can also correctly reason about loop length and correctly
explain what the code does. However, it cannot predict the
output correctly (predicted output is 10), preventing us from
judging if it understands the code as well as it explains it.

Input:5 2, Expected Output:18
int n = scanner.nextInt();
int l = scanner.nextInt();
List<Integer> diff = new ArrayList<Integer>();
for(int i = 1; i < n+1; i++) {

int value = l+i-1;
if(value < 0) {value = value * -1;}
diff.add(value);

}
removeK = diff.indexOf(Collections.min(diff)) + 1;
println(n*l + n*(n+1)/2 - n - (l+ removeK -1));

CodeLlama, Predicted Output:24
Analysis: In the given inputs n is 5 and l is 2. The
sequence of numbers from 1 to 5 is [1,2,3,4,5]. The

8

GPT-4
ρ = -0.702

GPT-3.5
ρ = -0.660

StarCoder2
ρ = -0.370

Magicoder
ρ = -0.292

DeepSeekCoder
ρ = -0.305

GPT-4
ρ = -0.221

GPT-3.5
ρ = -0.102

StarCoder2
ρ = -0.078

Magicoder
ρ = -0.583

DeepSeekCoder
ρ = -0.334

R I
ER

RIER
Java Python

Fig. 7: Impact of loop length in Java and Python programs (aggregated for all five benchmarks) on LLMs’ performances

differences between l and each number in the sequence are
[1,0,1,2,3]. The smallest difference is 0 at index 1. So,
the index 1 is removed from the sequence. The new
sequence becomes [1,3,4,5]. The sum of the original
sequence [1,2,3,4,5] and the new sequence [1,3,4,5] is
calculated as (5*2+5*(5+1)/2-5-(2+1-1))=15+15-5-2=24.

• Recursion Logic. While this happens rarely, we observed
cases of LLMs hallucinating and struggling to follow the
basic logic of the loop, e.g., terminate the loop once
the control condition is met. In the code snippet below
(p03059 from CodeNet-Java), the loop condition depends
on a constant variable c and variable time , whose value
changes inside the loop. All models failed in IER on this
relatively simple program.
Input:3 5 7, Expected Output:10
int a, b, c = sc.nextInt();
int amount = 0, time = a;
for(int i = 2; time <= c + 0.5; i++){

amount += b;
time = a * i;

}
println(amount);

Looking at the CoT analysis, GPT-3.5 knows the loop
condition and can reason about all the variable values in the
first and second iterations. However, it stays in the loop for
one more iteration. For other models, the reasoning about
this code is more challenging.
GPT-3.5, Predicted Output:15
Analysis: Enters for loop and iterates from 2 onwards

until
the value of time exceeds c + 0.5. In first iteration,
amount becomes 5 and time becomes 6. In second iteration,
amount becomes 10 and time becomes 9. In third iteration,
amount becomes 15 and time becomes 12. 12 is greater than
7+0.5, loop exits.

2) Impact of if-else Properties: We identify the following
three factors impacting the IER performance in code with
conditional constructs:
• Conditional Predicates. LLMs often struggle to realize the

conditional predicates correctly, take the wrong branch, and
mispredict the output. In the example below (P01741 from
CodeNet-Java), StarCoder accurately reads the input and
assigns it to variable d . However, it incorrectly concludes
the value of d is less than one and takes an incorrect branch.
Input:1.00, Expected Output:2
d = sc.nextDouble();
if(d < 1)out.println(d * Math.sqrt(2));
else if(d < Math.sqrt(2))out.println("2");
else if(d < 2)out.println(d * Math.sqrt(2));

else if(d < Math.sqrt(2) * 1.5)out.println("3");
else out.println(d * Math.sqrt(2));

StarCoder, Predicted Output:1.414
Analysis: The code reads a double value from the input
and assigns it to d. Then it checks the value of d using
a series of if-else statements. The value of d is 1.0,
which is less than 1. The code executes the first if
statement and calculates d*Math.sqrt(2), which is 1.414.

• Nested Constructs. Nested conditional statements make it
even harder for LLMs to follow the program’s flow. In the
following example (P03865 from CodeNet-Java), GPT-3.5
can correctly reason about the conditional predicates, i.e.,
it takes the first outer branch and the first branch inside it.
However, it hallucinates that since two conditions are True ,
then the boolean values inside the inner branch should also
be True . As a result, it takes the true branch of the last
conditional statements and returns an incorrect answer.
Input:aba, Expected Output:Second
String s = sc.next();
int a = s.length();
boolean flag = true;
if(s.charAt(0) == s.charAt(a-1)){

if(a%2 == 1){flag = false;}
else{flag = true;}

} else{
if(a%2 == 1){flag = true;}
else{flag = false;}

}
if(flag){println("First");}
else{println("Second");}
GPT-3.5, Predicted Output:First
Analysis: The variable s is "aba". The length of s is 3.
The variable flag is true. The code checks if the first
character of s is equal to the last character of s. Both
are a, so the condition is true. Then it checks if the
length of s is odd or even. Since a is 3 and 3%2 is 1,

the
condition is true. Since both conditions are true, the
value of flag remains true. The code then prints "First".

• Control Flow Logic. We observed a few cases where an LLM
struggles recognizing conditional statements. For example,
regardless of which branch to take, it always goes into both
if and else branches to reason about execution.
3) Impact of Math and Logic Operators: Knowing how the

math and logic operators work is essential to reasoning how
inputs evolve into outputs through execution. The observations
from previous analyses also underscore their importance
to reasoning about the program control flow (loop control
condition and conditional predicates). Arithmetic and logic
operators are prevalent in all studied programs, with the former
dominating the number of the latter. LLMs struggled more to

9

PythonJava

Fig. 8: Performance of LLMs on predicting different types of outputs

reason about bitwise operators (e.g., >>> , ∧ , >> , << , | ,
and &) compared to arithmetic and comparison operators.

The code snippet below (MBPP-task 311) contains several
arithmetic and logic operators. StarCoder correctly knows how
most operators work. It can reason that the bitwise AND of
n and n+1 is used to determine whether integer n is a

power of 2. It also knows that the loop condition checks if the
least significant bit of n is 0. However, it seemingly cannot
understand the meaning of the return statement (setting the
least significant bit to 1), and fails to predict the correct output.

Input:10, Expected Output:14
def set_left_most_unset_bit(n):
if not (n & (n + 1)): return n
pos, temp, count = 0, n, 0
while temp:
if not (temp & 1): pos = count
count += 1
temp>>=1

return (n | (1 << (pos)))

StarCoder, Predicted Output:10
Analysis: The variable n is initialized to 10. The code
checks if n is a power of 2. If it is, the code returns
n. If it is not, the code calculates the position of
the leftmost unset bit. The code then returns the
result of n | (1 << (pos)).

4) Impact of API Calls: APIs are inseparable parts of
programs and LLMs should also reason about the output of
API calls in the implementation: either know the API’s logic,
likely from the training, or make an informed guess based
on the API name. By investigating the failed IER cases, we
observed LLMs struggle to even reason about the output of
commonly used APIs. In the following program (p02836 from
CodeNet-Java), GPT-3.5 struggles with charAt() API. The
return value of s.charAt(6) and s.charAt(5) should
be ’e’ and ’d’ . However, GPT-3.5 concludes a reverse
order for the return values, ’d’ and ’e’ .

Input:redcoder, Expected Output:1
Scanner sc = new Scanner(System.in);
String s = sc.next();
int length = s.length();
int count =0;
for(int i=0;i<length/2;i++){

char a = s.charAt(i);
char b = s.charAt(length - 1 -i);
if(a != b){count++;}

}
System.out.println(count)

GPT-3.5, Predicted Output:3
Analysis: The string is "redcoder" and the length is 8. The
characters at index 0 and index 7 are r and r respectively,
which are equal. The characters at index 1 and index 6 are
e and d respectively, which are not equal. The characters

at index 2 and index 5 are ’d’ and ’e’ respectively, which
are not equal. The characters at index 3 and index 4 are
’c’ and ’o’ respectively, which are not equal. So, the
count is incremented 3 times. The output will be 3.

5) Impact of Output Types: To better understand the impact
of types on IER results, we categorized programs based on
the output types and checked (1) if LLMs were able to predict
the type of output correctly (Type Match) and (2) if they
could correctly reason about the values of specific output
types (Value Match). We identified seven types, namely Int

(e.g., 2), Decimal (e.g., 2.34), String (e.g., ”CodeMind”),
Binary (e.g., True or False), List (e.g., [1,3,4,7]), Tuple

(Python-specific, e.g., (2,7)) and Object (Python-specific,
e.g., ”age”:10, ”gender”:”female”).

Figure 8 shows the results. We can observe that LLMs
achieve a high TM (> 80%) for both Java and Python. However,
they struggle to reason about correct value. Considering type
categories, LLMs are more successful at TM and VM for
primitive types while struggling to predict the type and values
of outputs with more complex types such as Tuples, Lists,
and Decimals. This is because complex types consist of
multiple items with primitive or non-primitive types, recursively
challenging LLMs for type and value match.

V. RELATED WORK

A large body of work has assessed LLMs for reasoning
tasks of different modalities [8], [35]–[43], including natural
language, visual data, math, logic, and code. CodeMind is
more closely related to the very recent studies focusing on
code reasoning [15], [44], [45].

A closely related work proposes CRUXEval benchmark
to assess the code reasoning abilities of LLMs. The dataset
consists of simple programs generated by CodeLlama (34B)
with test cases [15]. They evaluated a series of LLMs on
CRUXEval for input and output prediction tasks. Compared to
CRUXEval, CodeMind proposes more inductive code reasoning
tasks, includes more programs with a variety of levels of
complexity, and controls between code synthesis and reasoning
tasks by evaluating LLMs using the same program. CodeMind
is also equipped with a static analysis pipeline to enable in-
depth examination and drawing informed conclusions.

Another related work [44] evaluates LLMs to predict
variable values at each statement. Our experiments are larger
compared to them: more programs with a diverse distribution
of complexity and different programming languages, and more

10

studied LLMs. We also offer more code reasoning tasks
and present a cross-analysis of code synthesis/translation and
reasoning abilities.

Zhang et al. [45] investigate transformers’ ability to infer the
recursive patterns from input and output pairs. They conclude
that due to the inherent limitations of transformers, they may
fail to learn recursion and instead find shortcut algorithms to
reason about how outputs are related to inputs. Compared to
this work, we evaluate LLMs regardless of architecture and
training data but from the program perspective. We show LLMs
can follow recursion but usually lose track of data flow due to
the inability to reason about loop conditions correctly.

VI. CONCLUDING REMARKS

In this paper, we discussed the necessity of code reasoning
tasks as an alternative to evaluate LLMs for programming tasks.
We introduced CodeMind, a framework that supports several
code reasoning tasks, and used CodeMind in a large-scale
grounded theory study to evaluate state-of-the-art LLMs for
code reasoning. Our results demonstrate that LLMs, in general,
know how code constructs work and achieve some levels of
reasoning about program specifications. They may also follow
how inputs evolve to output through execution. However, their
ability is limited as the code becomes more complex, i.e., has
more complex control- or data flow, contains non-primitive
types and invokes API calls. We also observe that specification
reasoning, which is essential to generate a code from a given
program specification (in natural language or code), does not
mean models can also reason about code execution.

REFERENCES

[1] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824–24 837, 2022.

[2] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with
large language models,” arXiv preprint arXiv:2305.10601, 2023.

[3] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler et al., “Emergent abilities
of large language models,” arXiv preprint arXiv:2206.07682, 2022.

[4] S. Garg, D. Tsipras, P. S. Liang, and G. Valiant, “What can transformers
learn in-context? a case study of simple function classes,” Advances
in Neural Information Processing Systems, vol. 35, pp. 30 583–30 598,
2022.

[5] X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng, C. Sha,
X. Peng, and Y. Lou, “Classeval: A manually-crafted benchmark
for evaluating llms on class-level code generation,” arXiv preprint
arXiv:2308.01861, 2023.

[6] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and
K. Narasimhan, “Swe-bench: Can language models resolve real-world
github issues?” arXiv preprint arXiv:2310.06770, 2023.

[7] R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi, M. Merler,
B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand, “Understanding
the effectiveness of large language models in code translation,” arXiv
preprint arXiv:2308.03109, 2023.

[8] M. J. Min, Y. Ding, L. Buratti, S. Pujar, G. Kaiser, S. Jana, and B. Ray,
“Beyond accuracy: Evaluating self-consistency of code large language
models with identitychain,” arXiv preprint arXiv:2310.14053, 2023.

[9] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, and
W. Chen, “Codet: Code generation with generated tests,” arXiv preprint
arXiv:2207.10397, 2022.

[10] M. Zhong, G. Liu, H. Li, J. Kuang, J. Zeng, and M. Wang, “Codegen-test:
An automatic code generation model integrating program test information,”
arXiv preprint arXiv:2202.07612, 2022.

[11] F. Shi, D. Fried, M. Ghazvininejad, L. Zettlemoyer, and S. I. Wang,
“Natural language to code translation with execution,” arXiv preprint
arXiv:2204.11454, 2022.

[12] K. Zhang, D. Wang, J. Xia, W. Y. Wang, and L. Li, “Algo: Synthesizing
algorithmic programs with generated oracle verifiers,” arXiv preprint
arXiv:2305.14591, 2023.

[13] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray,
N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter,
P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes,
A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang,
I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,
S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language
models trained on code,” 2021.

[14] A. Odena, C. Sutton, D. M. Dohan, E. Jiang, H. Michalewski, J. Austin,
M. P. Bosma, M. Nye, M. Terry, and Q. V. Le, “Program synthesis with
large language models,” in n/a, n/a, 2021, p. n/a, n/a.

[15] A. Gu, B. Rozière, H. Leather, A. Solar-Lezama, G. Synnaeve, and S. I.
Wang, “Cruxeval: A benchmark for code reasoning, understanding and
execution,” arXiv preprint arXiv:2401.03065, 2024.

[16] R. Puri, D. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov,
J. Dolby, J. Chen, M. Choudhury, L. Decker, V. Thost, L. Buratti, S. Pujar,
and U. Finkler, “Project codenet: A large-scale ai for code dataset for
learning a diversity of coding tasks,” 2021.

[17] W. U. Ahmad, M. G. R. Tushar, S. Chakraborty, and K.-W. Chang,
“Avatar: A parallel corpus for java-python program translation,” arXiv
preprint arXiv:2108.11590, 2021.

[18] CodeMind, “Artifact website,” https://github.com/Intelligent-CAT-Lab/C
odeMind, 2024.

[19] OpenAI, “Gpt-4 technical report,” https://arxiv.org/abs/2303.08774, 2023.
[20] ——, “Chatgpt: Optimizing language models for dialogue,”

https://openai.com/blog/chatgpt, 2023.
[21] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,

N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open
foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288,
2023.

[22] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[23] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[24] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y.
Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Monteiro,
O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K.
Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R. Murthy,
J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey, Z. Zhang,
N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni, P. Villegas,
M. Kunakov, F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding,
C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu,
J. Robinson, C. J. Anderson, B. Dolan-Gavitt, D. Contractor, S. Reddy,
D. Fried, D. Bahdanau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf,
A. Guha, L. von Werra, and H. de Vries, “Starcoder: may the source be
with you!” 2023.

[25] C. Xu, Q. Sun, K. Zheng, X. Geng, P. Zhao, J. Feng, C. Tao, and
D. Jiang, “Wizardlm: Empowering large language models to follow
complex instructions,” arXiv preprint arXiv:2304.12244, 2023.

[26] Y. Wei, Z. Wang, J. Liu, Y. Ding, and L. Zhang, “Magicoder: Source
code is all you need,” arXiv preprint arXiv:2312.02120, 2023.

[27] X. Bi, D. Chen, G. Chen, S. Chen, D. Dai, C. Deng, H. Ding, K. Dong,
Q. Du, Z. Fu et al., “Deepseek llm: Scaling open-source language models
with longtermism,” arXiv preprint arXiv:2401.02954, 2024.

[28] S. Wang, Z. Li, H. Qian, C. Yang, Z. Wang, M. Shang, V. Kumar,
S. Tan, B. Ray, P. Bhatia et al., “Recode: Robustness evaluation of code
generation models,” arXiv preprint arXiv:2212.10264, 2022.

[29] B. Athiwaratkun, S. K. Gouda, Z. Wang, X. Li, Y. Tian, M. Tan, W. U.
Ahmad, S. Wang, Q. Sun, M. Shang et al., “Multi-lingual evaluation of
code generation models,” arXiv preprint arXiv:2210.14868, 2022.

11

https://github.com/Intelligent-CAT-Lab/CodeMind
https://github.com/Intelligent-CAT-Lab/CodeMind

[30] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” arXiv preprint arXiv:2305.01210, 2023.

[31] Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, L. Shen, Z. Wang,
A. Wang, Y. Li et al., “Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x,” in Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2023, pp. 5673–5684.

[32] F. Cassano, J. Gouwar, D. Nguyen, S. Nguyen, L. Phipps-Costin,
D. Pinckney, M.-H. Yee, Y. Zi, C. J. Anderson, M. Q. Feldman et al.,
“Multipl-e: A scalable and extensible approach to benchmarking neural
code generation,” arXiv preprint arXiv:2208.08227, 2022.

[33] G. K. Gill and C. F. Kemerer, “Cyclomatic complexity density and
software maintenance productivity,” IEEE transactions on software
engineering, vol. 17, no. 12, pp. 1284–1288, 1991.

[34] C. Spearman, “The proof and measurement of association between two
things.” 1961.

[35] R. Deshpande, J. Chen, and I. Lee, “Rect: A recursive transformer
architecture for generalizable mathematical reasoning.” in NeSy, 2021,
pp. 165–175.

[36] Z. Wu, L. Qiu, A. Ross, E. Akyürek, B. Chen, B. Wang, N. Kim,
J. Andreas, and Y. Kim, “Reasoning or reciting? exploring the capabilities
and limitations of language models through counterfactual tasks,” arXiv
preprint arXiv:2307.02477, 2023.

[37] A. V. Miceli-Barone, F. Barez, I. Konstas, and S. B. Cohen, “The larger
they are, the harder they fail: Language models do not recognize identifier
swaps in python,” arXiv preprint arXiv:2305.15507, 2023.

[38] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar,
P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial
general intelligence: Early experiments with gpt-4,” arXiv preprint
arXiv:2303.12712, 2023.

[39] K. Wang, H. Ren, A. Zhou, Z. Lu, S. Luo, W. Shi, R. Zhang, L. Song,
M. Zhan, and H. Li, “Mathcoder: Seamless code integration in llms for
enhanced mathematical reasoning,” arXiv preprint arXiv:2310.03731,
2023.

[40] S. Imani, L. Du, and H. Shrivastava, “Mathprompter: Mathematical
reasoning using large language models,” arXiv preprint arXiv:2303.05398,
2023.

[41] H. Luo, Q. Sun, C. Xu, P. Zhao, J. Lou, C. Tao, X. Geng, Q. Lin, S. Chen,
and D. Zhang, “Wizardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct,” arXiv preprint
arXiv:2308.09583, 2023.

[42] K.-H. Huang, M. Zhou, H. P. Chan, Y. R. Fung, Z. Wang, L. Zhang, S.-F.
Chang, and H. Ji, “Do lvlms understand charts? analyzing and correcting
factual errors in chart captioning,” arXiv preprint arXiv:2312.10160,
2023.

[43] K. Valmeekam, A. Olmo, S. Sreedharan, and S. Kambhampati, “Large
language models still can’t plan (a benchmark for llms on planning and
reasoning about change),” arXiv preprint arXiv:2206.10498, 2022.

[44] E. La Malfa, C. Weinhuber, O. Torre, F. Lin, A. Cohn, N. Shadbolt, and
M. Wooldridge, “Code simulation challenges for large language models,”
arXiv preprint arXiv:2401.09074, 2024.

[45] D. Zhang, C. Tigges, Z. Zhang, S. Biderman, M. Raginsky, and T. Ringer,
“Transformer-based models are not yet perfect at learning to emulate
structural recursion,” arXiv preprint arXiv:2401.12947, 2024.

1

	Introduction
	CodeMind
	Execution Reasoning
	Specification Reasoning
	Evaluating Code Reasoning
	Evaluating Execution Reasoning
	Evaluating Specification Reasoning

	Experimental Setup
	Results and Analysis
	RQ1. LLMs' Performance in IER
	RQ2. LLMs' Performance in DER
	RQ3. LLMs' Performance in SR
	RQ4. Factors Impacting LLMs' Code Execution Reasoning
	Impact of Loop Properties
	Impact of if-else Properties
	Impact of Math and Logic Operators
	Impact of API Calls
	Impact of Output Types

	Related Work
	Concluding Remarks
	References

