
Program Decomposition and
Translation with Static Analysis

Ali Reza Ibrahimzada (alirezai@illinois.edu)
University of Illinois Urbana-Champaign, IL, USA

Code Translation

Code translation converts source code from one programming language to another (Java → Python).

Figure 1. Translation of a code snippet from Java to Python.

Problem Significance & Research Gap

Use cases of code translation in industry include:

Application Modernization: Upgrading the underlying languages of legacy applications (COBOL).

Architecture Migration: Migrating monolithic software architecture to cloud-native ones.

Performance Upgrade: Translation can be used to improve the performance of existing software.

Existing techniques for code translation broadly fall into the following categories:

Transpilers: Tools like C2Rust [1] lack native target language features (e.g., memory safety).

Learning-based Techniques: These techniques use parallel training data to learn different code

features (e.g., mppSMT [2], TransCoder [4]).

LLMs: LLMs have excelled in generative software engineering tasks, generalizing well and

generating more natural code. In this work, we aim at answering the question ”Can we effectively

use LLMs for translating repository-level projects?”.

Empirical Evaluation of LLMs [3]

We systematically evaluated state-of-the-art LLMs on multiple benchmarks and real-world projects.

Dataset Source Language
% Successful Translations

CodeGen CodeGeeX StarCoder GPT-4 Llama 2

CodeNet

C 23.4% 14.9% 42.0% 83.0% 14.9%

C++ 14.0% 3.6% 39.1% 80.0% 9.5%

Go 14.3% 5.9% 42.0% 85.5% 16.9%

Java 21.3% 10.3% 30.3% 81.3% 13.9%

Python 17.5% 7.3% 33.3% 79.9% 11.0%

AVATAR
Java 8.1% 1.8% 11.9% 70.8% 1.8%

Python 3.8% 1.6% 14.2% 52.2% 4.7%

Evalplus Python 16.5% 3.7% 22.0% 79.3% 1.2%

Commons-CLI Java 0.0% 0.0% 0.0% 13.6% 0.0%

Click Python 0.0% 0.0% 0.0% 0.0% 0.0%

Average - 8.1% 2.8% 14.5% 47.3% 3.5%

Table 1. Empirical evaluation of LLMs on crafted and real-world benchmarks.

What Causes Unsuccessful Translations?

Figure 2. Distribution of translation outcome of three best performing models.

Why LLMs Struggle with Real-world Projects?

Real-world projects pose more complex challenges for code translation, such as handling method over-

loading, exceptions, inheritance relations, etc. LLMs also suffer capturing the proper context due to

inter- and intra-procedural dependencies.

Figure 3. An illustrative example of unsuccessful translation generated by GPT-4 caused by method-overloading.

Method-level Program Decomposition

We propose method-level program decomposition to address the out-of-context issue with LLMs. To

support our claim, we use static analysis to analyze 60K methods and study if it is feasible to decompose

programs based on methods.

Project
% Files

>2K Tokens
Methods

Avg. Tokens

/ Method

% Methods

>2K Tokens

% 2K

Context

bcel 11.29% 4,094 70.42 0.15% 3.44%

beanutils 29.84% 2,675 107.09 0.07% 5.23%

cli 30.77% 582 97.91 0.17% 4.78%

codec 48.30% 1,788 189.29 0.84% 9.24%

collections 19.34% 6,354 74.37 0.02% 3.63%

csv 27.08% 871 102.53 0.11% 5.01%

daemon 27.78% 60 108.63 0.00% 5.30%

dbcp 38.52% 3,622 63.02 0.03% 3.08%

dbutils 13.54% 869 61.44 0.00% 3.00%

fileupload 16.67% 401 77.8 0.00% 3.80%

geometry 39.13% 6,615 124.93 0.03% 6.10%

imaging 14.78% 2530 143.71 0.20% 7.02%

io 22.07% 5,957 77.94 0.07% 3.81%

jexl 25.70% 3,967 109.37 0.20% 5.34%

lang 40.34% 9,134 103.33 0.12% 5.05%

net 23.83% 2,023 98.22 0.15% 4.80%

pool 22.68% 1,377 94.13 0.00% 4.60%

rng 36.60% 3,245 139.69 0.52% 6.82%

text 28.32% 2,712 99.85 0.04% 4.88%

validator 38.00% 1,181 147.42 0.17% 7.20%

Average 27.73% 3002.85 104.55 0.14% 5.11%

Table 2. The effect of method-level program decomposition on a 2K context window model. The analysis has been done

on 20 well-known Apache Commons projects.

Call Graph-based Program Translation

Bo
tt
om

-U
p

Decomposition

Technique

Source

Files

Out-of-Context

Inputs

% Context

Occupied

No Decomposition 22 8 36%

Method Decomposition 22 0 3%

Table 3. The effectiveness of method-level decomposition when translating Apache

Commons CLI using its Call Graph.

CG-aware Prompt Engineering for Real-World Projects

Can we dynamically craft prompts and enforce dependencies in real-world projects? How effective is

providing more contextual information to LLMs?

Figure 4. Fine-grained prompt template for translating decomposed fragments.

Check ourwork on Code Translation!

SRC Paper ICSE Paper Leaderboard Code

References

[1] C2rust transpiler.

https://github.com/immunant/c2rust, 2023.

[2] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.

Divide-and-conquer approach for multi-phase statistical migration for source code (t).

In 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 585–596. IEEE, 2015.

[3] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert PouguemWassi, Michele Merler, Boris Sobolev, Raju Pavuluri,

Saurabh Sinha, and Reyhaneh Jabbarvand.

Lost in translation: A study of bugs introduced by large language models while translating code.

In ACM/IEEE International Conference on Software Engineering, 2024.

[4] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.

Unsupervised translation of programming languages.

Advances in Neural Information Processing Systems, 33:20601–20611, 2020.

alirezai.cs.illinois.edu International Conference on Software Engineering (ICSE) 2024 - Lisbon, Portugal alirezai@illinois.edu

https://github.com/immunant/c2rust
https://alirezai.cs.illinois.edu
mailto:alirezai@illinois.edu

