
Perfect Is the Enemy of Test Oracle

Ali Reza Ibrahimzada
University of Illinois Urbana-Champaign, USA

alirezai@illinois.edu

Yigit Varli
Middle East Technical University, Turkey

yigit.varli@metu.edu.tr

Dilara Tekinoglu
University of Massachusetts Amherst, USA

dtekinoglu@umass.edu

Reyhaneh Jabbarvand
University of Illinois Urbana-Champaign, USA

reyhaneh@illinois.edu

ABSTRACT

Automation of test oracles is one of the most challenging facets of

software testing, but remains comparatively less addressed com-

pared to automated test input generation. Test oracles rely on a

ground-truth that can distinguish between the correct and buggy

behavior to determine whether a test fails (detects a bug) or passes.

What makes the oracle problem challenging and undecidable is the

assumption that the ground-truth should know the exact expected,

correct, or buggy behavior. However, we argue that one can still

build an accurate oracle without knowing the exact correct or buggy

behavior, but how these two might differ. This paper presents SEER,

a learning-based approach that in the absence of test assertions

or other types of oracle, can determine whether a unit test passes

or fails on a given method under test (MUT). To build the ground-

truth, SEER jointly embeds unit tests and the implementation of

MUTs into a unified vector space, in such a way that the neural

representation of tests are similar to that of MUTs they pass on

them, but dissimilar to MUTs they fail on them. The classifier built

on top of this vector representation serves as the oracle to generate

łfailž labels, when test inputs detect a bug in MUT or łpassž labels,

otherwise. Our extensive experiments on applying SEER to more

than 5K unit tests from a diverse set of open-source Java projects

show that the produced oracle is (1) effective in predicting the fail

or pass labels, achieving an overall accuracy, precision, recall, and

F1 measure of 93%, 86%, 94%, and 90%, (2) generalizable, predicting

the labels for the unit test of projects that were not in training or

validation set with negligible performance drop, and (3) efficient,

detecting the existence of bugs in only 6.5 milliseconds on average.

Moreover, by interpreting the neural model and looking at it be-

yond a closed-box solution, we confirm that the oracle is valid, i.e.,

it predicts the labels through learning relevant features.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging; · Computing methodologies→ Neural networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549086

KEYWORDS

Software Testing, Test Oracle, Test Automation, Deep Learning

ACM Reference Format:

Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jab-

barvand. 2022. Perfect Is the Enemy of Test Oracle. In Proceedings of the

30th ACM Joint European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE ’22), Novem-

ber 14ś18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3540250.3549086

1 INTRODUCTION

A unit test similar to the example in Figure 1 consists of four

main components: test input ("e1", "e2", and "e3"), MUT invocation

(obj.sort()), test output, and test oracle (assertEquals). Given a

ground-truth that knows the program’s expected correct or buggy

behavior for given inputs, oracles can determine test results, i.e.,

whether a test passes or fails. For example, the ground-truth in the

example of Figure 1 identifies the sorted output for given inputs to

be "e1,e2,e3". Consequently, the assertion oracle checks if the pro-

duced output matches the expected one to generate the test result.

Construction of the ground-truth can be a challenging task. Further-

more, the absence of automated ground-truths demands humans to

decide whether the generated outputs are correct, demonstrating a

significant bottleneck that inhibits absolute test automation [6].

@Test
public void testAdd() {
 ExampleObject obj = new ExampleObject();
 obj.add(“e1”);
 obj.add(“e2”);
 obj.add(“e3”);
 String output = obj.sort();
 Assert.assertEquals(output,“e1,e2,e3 ”);
}

Figure 1: A simple JUnit test consists of four main components:

input, MUT invocation, output, and assertion

To automatically build the ground-truth for test oracles, tradi-

tional and machine learning-based techniques rely on existing or

derived formal specifications [18], assertions [25, 51, 72, 77, 80], pro-

gram invariants [23, 88], and metamorphic relations [13, 14, 87, 90]

for identifying the correct behavior. Some other techniques deter-

mine the patterns corresponding to specific types of bugs observed

during test execution as an indicator of the buggy behavior [35, 45].

The commonality between these techniques is their emphasis on

identifying the exact correct or buggy behavior to build the ground-

truth. However, identifying the exact behavior and output is an

70

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3540250.3549086
https://doi.org/10.1145/3540250.3549086

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand

// Correct implementation f(x) = |x|*(x+2)*(x-2)
public double example(double x){
 double output;
 if(x>=0)
 output = x*(x+2)*(x-2);
 else
 output = Math.abs(x)*(x+2)*(x-2);
 return output;
}

// Buggy implementation f(x) = |x*(x+2)*(x-2)|
public double example_buggy(double x){
 double output;
 output = Math.abs(x*(x+2)*(x-2));
 return output;
}

-3 -2 -1 0 1 2 3

15

10

5

0

-5

 buggy correct

(c)(a)

@Test
public void test1() {
 double o1 = example_buggy(0.5);
 Assert.assertTrue(“msg”,o1>=0);
}

@Test
public void test2() {
 double o2 = example_buggy(-1);
 double o3 = example_buggy(1);
 Assert.assertEquals(o2,o3);
}

(b)

input

ou
tp

ut

Figure 2: (a) correct (top) and buggy (bottom) implementations of the mathematical function 𝑓 (𝑥) = |𝑥 | × (𝑥 + 2) × (𝑥 − 2) , (b) visualization of

the correct and buggy implementations behavior, (c) JUnit tests with assertions to assess correctness of the buggy implementation

undecidable problem; thereby, such techniques only partially vali-

date the program. That is, the program can only be validated under

a subset of test inputs with known expected outputs, or limited

properties of the program determined by the invariants or metamor-

phic relations can be validated. While partial oracles enhance test

automation to some degree, they may not guarantee the existence

of a successful test driver.

The key insight in our research is that one can still create an

accurate test oracle without knowing the explicit relationship be-

tween inputs and outputs under correct or buggy behavior. Instead,

the ground-truth will determine how different the test inputs are

correlated to outputs under the correct and buggy behavior. An

oracle based on this ground-truth eliminates the need for assert

statements and identifying the exact expected output in assertions,

enhancing unit testing to a great extent [77].

In this paper, we present SEER 1, an automated oracle to pre-

dict unit test results. Specifically, given a pair of <𝑡𝑖 ,𝑚𝑖>, where 𝑡𝑖
represents a unit test without any assertions, and𝑚𝑖 denotes the

implementation of MUT, SEER automatically determines whether

the test passes or fails on the MUT. To construct the ground-truth,

SEER leverages joint embedding to distinguish between the neural

representation of correct and buggyMUTs. A classifier on top of this

embedding learns the correlation between inputs and outputs to

predict test results. This paper makes the following contributions:

• A novel domain-specific joint embedding of the unit tests and

MUTs, which semantically separates MUTs’ neural representa-

tions based on whether unit tests pass or fail on them.

• Design of an interpretable DL model that serves as a test oracle

to generate passing or failing labels for unit tests without asser-

tions. The interpretability enables us to go beyond the usage of

DL as a closed-box technique and verify if the model predicts

labels by looking at the relevant tokens in the implementation

of MUTs. While it is out of the scope of this paper, the relevant

tokens involved in the model’s decision can be further used by

developers to localize the detected bugs.

• An extensive empirical evaluation on widely used open-source

Java programs demonstrating that SEER is (1) effectiveÐachieves

an overall accuracy, precision, recall, and F1 measure of 93%, 86%,

94%, and 90%, (2) generalizableÐpredicting the labels for the unit

1A person who can see what the future holds through supernatural insight.

test of projects that were not in training or validation set with

negligible performance drop, and (3) efficientÐonce trained, it

detects the existence of bugs in only 6.5 milliseconds on average.

SEER’s implementation and artifacts are publicly available [2].

The remainder of this paper is organized as follows. Section 2

illustrates a motivating example. Section 3 provides an overview of

SEER, while Section 4 describes details of the proposed technique.

Section 5 presents the evaluation results. The paper concludes with

a discussion of the related research and future work.

2 ILLUSTRATIVE EXAMPLE

To illustrate the limitations of prior work and explain the intuition

behind our research, we use two code examples shown in Figure 2-

a. The code snippet on the top is the correct implementation of

a mathematical function that computes the output as |𝑥 | × (𝑥 +

2) × (𝑥 − 2). The buggy version, on the other hand, computes the

output as |𝑥 × (𝑥 + 2) × (𝑥 − 2) | due to the displacement of a single

parenthesis to the end of the assignment instead of after variable x.

Formally speaking, the behavior of a code is a function 𝐵 : 𝐼 → 𝑂

that maps inputs in 𝐼 to corresponding outputs in 𝑂 . In our exam-

ple, the mapping functions representing the explicit behavior of

correct and buggy implementations are depicted as blue and yel-

low graphs in Figure 2-b. If such a function is known, an oracle

can use it as a ground-truth to distinguish the buggy and correct

behavior. However, in reality, MUTs take multiple complex inputs,

e.g., arrays and user-defined objects, resulting in n-dimensional

mappings between inputs and outputs that are infeasible to de-

termine. Therefore, test oracles rely on partial ground-truths. No

matter how we build the ground-truth, the oracle’s decision for test

inputs belonging to (−2, 0) ∪ (0, 2) should be łfailž due to different

behavior of the correct and buggy implementations in this range.

Suppose that we have two JUnit tests shown in Figure 2-c to

assess the correctness of the example_buggy method. The ground-

truth for identifying the expected output in the assert statement of

test1 is based on dynamic invariant detection, while the ground-

truth for the assert statement in test2 is based on a metamorphic

relation 𝑓 (𝑥) = 𝑓 (−𝑥). Dynamic invariant detection techniques rely

on the execution traces of the existing code. Since our MUT is buggy,

the invariant only captures properties of the buggy behavior, i.e.,

𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 0. By checking the generated invariant in the assertion,

71

Perfect Is the Enemy of Test Oracle ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Embedding Space

public double example(double x){
 double output;
 if(x>=0)
 output = x*(x+ 2)*(x-2);
 else
 output = Math.abs(x)*(x+2)*(x-2);
 return output;
}

public double example_buggy(double x){
 double output;
 output = Math. abs(x*(x+2)*(x-2));
 return output;
}

@Test
public void test1() {
 double o1 = example_buggy(0.5);
}

@Test
public void test2() {
 double o2 = example_buggy(-1);
 double o3 = example_buggy(1);
}

@Test
public void test3() {
 double o4 = example_buggy(0);
}

Figure 3: The intuition behind the joint embedding of tests and

MUTs with the goal of separating the representation of buggy and

correct MUTs with respect to tests

the test passes for 𝑥 = 0.5 ∈ (−2, 0) ∪ (0, 2), while it should fail

to demonstrate the bug. Similarly, the metamorphic relation of

𝑓 (𝑥) = 𝑓 (−𝑥) holds for both correct and buggy implementations;

thereby, the assertion wrongly decides the test inputs in the non-

overlapping range as passed.

This example shows that identifying the explicit correct (or

buggy) behavior to build a ground-truth, which has been the focus

of prior work, has notable limitations. In this research, instead of re-

alizing how the inputs are explicitly related to outputs under either

correct or buggy behavior, we aim to learn how inputs are differ-

ently correlated to outputs for failing and passing pairs of <𝑡𝑖 ,𝑚𝑖>.

Here, 𝑡𝑖 represents a unit test without any assertions, and𝑚𝑖 de-

notes the implementation of the MUT. To that end, SEER learns the

vector representation of both MUT and test, so that the tests have

a similar vector representation to the MUTs they pass on them, but

dissimilar vector representation to MUTs they can reveal their bug,

i.e., fail on them. Such joint embedding separates the representation

of buggy and correct MUTs in the n-dimensional vector space.

Figure 3 shows the intuition behind the joint embedding in SEER.

Here, since test inputs in test1 and test2 can reveal the bug in

example_buggy, they are closer to the correct MUT and farther

from the buggy MUT in the embedding space, i.e., they have a

similar vector representation as correct MUT but dissimilar from

buggy MUT. On the other hand, test3 that cannot reveal the bug

and should pass on both the buggy and correct MUTs, has the

same distance from the correct and buggy MUTs in the embedding

space. Compared to Figure 2-b, there is no explicit relationship

between test inputs and outputs under correct or buggy behavior,

but the embedding representation of correct and buggy MUTs are

distinguished based on how the output they generate are correlated

differently to the inputs of passing or failing tests.

3 FRAMEWORK OVERVIEW

Figure 4 provides an overview of SEER framework consisting of four

major components: (1) Method Extractor, (2) Dataset Augmentor, (3)

Learning Module, and (4) Interpreter. SEER requires a high-quality

and large dataset of <𝑡𝑖 ,𝑚𝑖> instances to train the oracle. Given

a set of programs and their corresponding test suites, the Method

Extractor component builds such a dataset by extracting the imple-

mentation of MUT invocations in tests through a lightweight static

analysis (details in ğ4.1). At the next step, Method Extractor creates

labeled tuples in the form of ⟨𝑡𝑖 ,𝑚𝑖 , 𝑙𝑖 ⟩, where 𝑡𝑖 represents a unit

test,𝑚𝑖 denotes the implementation of MUT, and 𝑙𝑖 shows the test

result outcome, which could be 𝑃 (pass) or 𝐹 (fail). Dataset Aug-

mentor component then takes the generated dataset and augments

it with additional instances to diversify the bugs and account for

imbalanced labels (details in ğ4.3).

Once the training dataset is ready, SEER feeds it to the Learning

Module to train the oracle through two phases. In the Phase 1

training, the Learning Module learns the vector representation of

the test 𝑡𝑖 and the MUT𝑚𝑖 through joint embedding by minimizing

the distance among passing tuples ⟨𝑡𝑖 ,𝑚𝑖 , 𝑃⟩, while maximizing

the distance among failing tuples ⟨𝑡𝑖 ,𝑚𝑖 , 𝐹 ⟩ (detail in ğ4.2). As a

result, the vector representation of a test is similar to the MUTs

it passes on them, but dissimilar to the MUTs it fails on. After

learning the discriminative vector representations, Learning Module

leverages transfer learning [52] and trains a classifier on top of the

embedding network, which serves as our test oracle. To predict

the label, SEER takes a unit test and the program under test as an

input and extracts the implementation of invoked MUT(s). Given

the produced pair of ⟨𝑡𝑖 ,𝑚𝑖 ⟩, the embedding network first computes

their vector representations, and the classifier predicts the label,

indicating whether a test passes on the given MUT or fails.

SEER goes beyond the use of DL as a closed-box approach and

interprets the learned model for two purposes: (1) to verify if the

embedding does its job in separating the representation of MUTs

based on whether a test passes or fails on them, and (2) to verify the

validity of the model by checking if the code tokens that impacted

the oracle’s decision are relevant (ğ4.4). In the next section, we

describe the details of SEER’s components.

4 SEER

This section will first explain how to prepare the inputs to the

Learning Module, followed by the details about SEER’s neural ar-

chitecture, dataset curation, and model interpretation.

4.1 Method Extractor

SEER’s Learning Module requires labeled pairs of <𝑡𝑖 ,𝑚𝑖> to re-

alize the correlation between the inputs (provided by unit tests

𝑡𝑖) and outputs (produced by MUT 𝑚𝑖). Given a test suite 𝑇 =

{𝑡1, 𝑡2, . . . , 𝑡𝑛} consists of 𝑛 unit tests and the program under test

𝑃 = {𝑚1,𝑚2, . . . ,𝑚𝑘 } consists of 𝑘 developer-written methods2,

Method Extractor extracts 𝑚𝑖 , the implementation of a MUT di-

rectly called in the body of the unit test 𝑡𝑖 .

Method extraction can be performed statically, i.e., extracting

the whole body of the MUTs regardless of the statements covered

by a given test, or dynamically, i.e., only considering the executed

statements by a test. While the latter is more intuitive in helping

the model focus on the executed lines for predicting test verdicts,

recent studies have shown that neural models learn the seman-

tics of the code and context more effectively if provided global

information [34, 76]. Consequently, the Model Extractor performs

a lightweight flow-sensitive analysis on a given unit test 𝑡𝑖 , iden-

tifies the MethodInvocation that belongs to the program under

test, and extracts the corresponding method signature and the body.

If a test invokes multiple methods, Model Extractor concatenates

the extracted information for the MUTs in the order of invocation.

In the illustrative example of Figure 2, Method Extractor identifies

2We exclude third-party APIs as their code may not be available.

72

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand

Test Suits Programs

Dataset

Dataset
Augmentor

Embedding
Network

Oracle
(Classifier)

Embedding
Analysis

Attended
Tokens

Attention
Analysis

Hypothesis
Verification

M
et

ho
d

E
xt

ra
ct

or

Le
ar

ni
ng

M
od

ul
e

In
te

rp
re

te
r

Test
Verdict

P
P

FF
P ?

JUnit Test Program

Call
Graph

Call
Graph

Training Testing

<T,C,P>

<T,C,P><T,C,P>

<T,C,F>
<T,C,F>

<T,C,?>

*
*

Figure 4: Overview of the SEER framework

example_buggy method as𝑚𝑖 and extracts the whole text of the

method, including the method signature and body.

4.2 Learning Module

The neural architecture of SEER is shown in Figure 5. Learning

the neural model that serves as an oracle happens in two phases.

In Phase 1 training, SEER learns the vector representation of unit

tests and MUTs, in such a way that the representation of buggy and

correct MUTs are different. At the next step, the representation of

<𝑡𝑖 ,𝑚𝑖> pairs will be fed into a classifier, helping SEER to learn the

correlation between inputs provided by 𝑡𝑖 and outputs produced by

𝑚𝑖 . Since the produced representation of buggy and correct MUTs

are different, the oracle ultimately learns how differently the inputs

are correlated to outputs under the correct and buggy behavior.

During the Phase 1 training, SEER learns the vector represen-

tation of unit tests and MUTs through joint embedding [84]. Joint

embedding, also known asmulti-modal embedding, has beenwidely

used to embed heterogeneous data into a unified vector space so

that semantically similar concepts across the two modalities reside

closer in the embedding space. For example, in computer vision,

researchers have used Convolutional Neural Network (CNN) and

Recurrent Neural Network (RNN) to jointly embed images and text

into the same vector space for labeling images [39].

We adopt the concept of joint-embedding in our problem to se-

mantically separate the representation of correct and buggy MUTs

concerning the result of tests. Specifically, we hypothesize that by

jointly embedding the unit tests and MUTs into a unified vector

space, so that tests have similar vector representations to the MUTs

they pass on them but are different from the MUTs they fail on

them, the resulting embedding separates the representation of cor-

rect and buggy MUTs. The joint embedding of unit test, 𝑡𝑖 , and

implementation of MUT,𝑚𝑖 , can be formulated as follows:

𝑚𝑖
𝜙
−→ 𝐷𝑚𝑖

−→ 𝐽 (𝐷𝑚𝑖
, 𝐷𝑡𝑖) ←− 𝐷𝑡𝑖

𝜓
←− 𝑡𝑖

Token Embedding

Pooling

Dm+ Dm-Dt

cos(Dm+ ,Dt) cos(Dm- ,Dt)

Margin
Ranking Loss

Concatenated Feature
Representation

Feed Forward

Softmax with WCE Loss

T m+ m-

Positional
Encoding

Dt Dm

Label (pass/fail)

Phase 2

Phase 1

Add & Norm

Feed Forward

Add & Norm

Multi-Head Attention

Transform
er

E
ncoder

Figure 5: Overall architecture of SEER

where 𝜙 is an embedding function to map 𝑚𝑖 into a d-

dimensional vector space 𝐷 ; 𝜓 is an embedding function to map

𝑡𝑖 into the same vector space 𝐷 ; and 𝐽 (,) is a similarity measure

to score the matching degrees of 𝐷𝑚𝑖
and 𝐷𝑡𝑖 in order to put𝑚𝑖

and 𝑡𝑖 closer or farther in the embedding space. SEER uses the co-

sine similarity metric to measure the similarity between the vector

representations of 𝑡𝑖 and𝑚𝑖 . A small cosine similarity means two

vectors are closer together in d-dimensional embedding spaces,

while a bigger cosine similarity means the vectors point to different

angles, i.e., are farther from each other in the embedding space. To

learn and semantically separate the representation of correct and

buggy𝑚𝑖s with respects to the test results, SEER minimizes the

ranking loss as follows:

L(𝜃) =
∑︁

⟨𝑡𝑖 ,𝑚𝑖+,𝑚𝑖−⟩

𝑚𝑎𝑥 (𝑐𝑜𝑠 (𝐷𝑡𝑖 −𝐷𝑚𝑖+)−𝑐𝑜𝑠 (𝐷𝑡𝑖 −𝐷𝑚𝑖−)+𝛼, 0)

where 𝐷𝑡𝑖 is the vector representation of 𝑡𝑖 , 𝐷𝑚𝑖+ is the vector rep-

resentation of a MUT that 𝑡𝑖 passes on it, and 𝐷𝑚𝑖− is the vector

representation of a MUT that 𝑡𝑖 fails on it. The 𝜃 and 𝛼 represent

model parameters and a constant margin value, respectively. In-

tuitively, by minimizing the margin ranking loss, SEER learns to

minimize the distance between 𝐷𝑡𝑖 and 𝐷𝑚𝑖+, while maximizing

the distance between 𝐷𝑡𝑖 and 𝐷𝑚𝑖− .

After learning the vector representation of tests, 𝐷𝑡𝑖 , and MUTs,

𝐷𝑚𝑖
, in Phase 1, SEER concatenates them to create a single con-

tinuous feature representation for the <𝑡𝑖 ,𝑚𝑖> pair. The resulting

combined feature vector is fed into a series of fully connected layers

in Phase 2 training to decode the learned features into a specific

target class, i.e., pass or fail.

4.3 Dataset Curation

Training of SEER requires a large and high-quality dataset, i.e., a

dataset consists of passing and failing ⟨𝑡𝑖 , 𝑐𝑖 ⟩ pairs representing

a diverse set of bugs across different projects. To construct the

73

Perfect Is the Enemy of Test Oracle ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

dataset, we started with the Defects4J [1], which is a collection of

reproducible bugs in large and widely-used Java projects. Each bug

in this dataset is accompanied by the buggy and fixed versions of

subject programs as well as developer-written passing and failing

tests. Our rationales to build the dataset based on Defects4J are:

(1) the bugs are isolated and reproducible, making it easier for the

neural model to learn relevant features; and (2) it contains failing

developer-written tests, helping with the generation of a balanced

dataset, since the automated generation of failure-triggering tests

using Randoop [51] and EvoSuite [25] is not guaranteed.

A significant limitation of Defects4J dataset is the complexity of

the bugs, i.e., the majority of bugs involve only one statement in

the code. This issue can degrade the performance of SEER in two

ways. First of all, the model may treat small changes in the code

as noise and may not include them in learning, achieving a lower

performance [33, 79]. More importantly, a model trained on simple

bugs may not generalize to complex, more realistic bugs. Inspired

by the power of mutation testing in curating high-quality training

datasets [35] and the fact that higher-order mutants [37] are more

representative of complex bugs, Dataset Augmentor component of

SEER takes a passing ⟨𝑡𝑖 ,𝑚𝑖 ⟩ pair as input and mutates the MUT

repeatedly at different locations to generate higher-order mutants.

Algorithm 1 explains our dataset augmentation process. The

algorithm takes the 𝑀𝑈𝑇 and 𝑜𝑟𝑑𝑒𝑟Ðthe maximum number of

times we mutate a given MUTÐas an input and generates a higher-

order mutant, 𝐻𝑂𝑀 . To that end, it first identifies unique pairs of

𝑀𝑢𝑡𝑎𝑏𝑙𝑒𝑠 = ⟨𝑜𝑝, 𝑙𝑜𝑐⟩ that demonstrate the locations 𝑙𝑜𝑐 in MUT

where a mutation operator 𝑜𝑝 can be applied (Line 1). Next, it

mutates the MUT once at a time using these pairs (Lines 4-5). After

each mutation, the algorithm checks whether or not the generated

mutant is compilable (Line 7). The algorithm continues themutation

using the next 𝑚𝑢𝑡𝑎𝑏𝑙𝑒 (Lines 8-9) if the mutant is compilable.

Otherwise, it reverts themutation and terminates with the produced

𝐻𝑂𝑀 (Lines 10-11). Mutation continues until the MUT is mutated

𝑜𝑟𝑑𝑒𝑟 times or it has been mutated at all the mutable locations.

4.4 Interpretation

Without interpretation, one cannot trust the performance of ML,

and specifically DL models, as their learning depends on millions

of parameters. Specifically, such intelligent models can create unre-

alistically good predictions, but based on learning from irrelevant

features due to the noise in the dataset or data leakage problem [40].

To ensure the trustworthiness of SEER, we validate the following

two hypotheses by interpreting the Learning Module: Hypothesis

1. The oracle looks at relevant tokens in the MUT to predict a

test result; and (2) Hypothesis 2. The embedding network separates

buggy and correct MUTs in the embedding space by distinguishing

their vector representations. We will discuss the details of Attention

Analysis and Embedding Analysis to investigate the correctness of

Hypothesis 1 and Hypothesis 2, respectively.

4.4.1 Attention Analysis. Attention mechanism [15], which was

initially proposed to overcome the long sequence problem in Recur-

rent Neural Networks (RNNs), is a method for helping DL models to

identify the importance of single features in a feature sequence as

they perform their tasks. Attention mechanism serves two purposes

in neural architectures; first, it helps with the model’s performance.

Algorithm 1: Dataset Augmentation Algorithm

Input:MUT, order

Output: A Higher Order Mutant of MUT (HOM)

1 Mutables← getUniqueMutables (𝑀𝑈𝑇)

2 counter ← order

3 HOM ← MUT

4 foreach mutable ∈ Mutables do

5 mutant ← mutate (MUT ,mutable.op,mutable.loc)

6 if counter > 0 then

7 if isCompilable(mutant) then

8 HOM ← mutant

9 counter ← counter − 1

10 else

11 return 𝐻𝑂𝑀

12 else

13 break

14 return 𝐻𝑂𝑀

More importantly, it has been extensively used to resolve the inter-

pretability of deep neural models. The initial implementations of

the Attention mechanism were neural layers between the encoder

and decoder components in the neural architecture, producing at-

tention weight vectors,
−→
𝐴𝑇 = {𝑤0, . . . ,𝑤𝑛}, as an output. In the

context of neural code analysis,𝑤𝑖 is the probability that given a

statement with 𝑛 tokens, how important is the token at location 𝑖

in the statement when predicting a label. The higher the Attention

weight for a feature, the more the model attends to it when making

a prediction.

SEER uses Multi-Head Attention [15, 74], also known as Self

Attention, to consider the relative importance of a token in the

statement when learning. The output of a Self Attention layer is

an 𝑛 × 𝑛 matrix 𝑆𝐴 = [[𝑤00 , . . . ,𝑤0𝑛], . . . , [𝑤𝑛0
, . . . ,𝑤𝑛𝑛]], where

𝑤𝑖 𝑗 represents the how important is the token at location 𝑖 given a

specific token at location 𝑗 . Figure 6 shows the difference between

these two Attention mechanisms for the buggy statement in our

Math.abs

Output
=

(

)

x+2

(
*

x

*
(
x-2
)

)
;

Attention Vector

Self Attention Matrix

Ma
th

.a
bs

Ou
tp

ut

= ()x+
2

(*x * (x-
2

)) ;

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 6: The importance of Self Attention in the oracle problem

74

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand

Algorithm 2: Attention Analysis

Input:MUT’s tokens
−−→
𝑇𝑘𝑛 = {𝑐0, . . . , 𝑐𝑛 }

Input:MUT’s statements
−−→
𝑆𝑚𝑡 = {𝑠0, . . . , 𝑠𝑚 }

Input: 𝑆𝐴 = [[𝑤00
, . . . , 𝑤0𝑛], . . . , [𝑤𝑛0

, . . . , 𝑤𝑛𝑛]]

Input: Attention threshold 𝑘

Output: Attended tokens 𝐴𝑇𝑘𝑛, Attended statements 𝐴𝑆𝑚𝑡

1 ATkn← ∅

2 ASmt ← ∅

3 foreach 𝑟𝑜𝑤 = [𝑤𝑖0 , . . . , 𝑤𝑖𝑛] ∈ 𝑆𝐴 do

// 𝑙𝑜𝑐𝑎𝑙𝐴𝑇𝑘𝑛 = {⟨𝑐𝑖 , 𝑖𝑛𝑑𝑖 ⟩ | 𝑖𝑛𝑑𝑖 is index of 𝑐𝑖 in
−−→
𝑇𝑘𝑛}

4 𝑙𝑜𝑐𝑎𝑙𝐴𝑇𝑘𝑛 ← getMostAttended (row, Tkn, k)

5 foreach ⟨𝑐𝑖 , 𝑖𝑛𝑑𝑖 ⟩ ∈ 𝑙𝑜𝑐𝑎𝑙𝐴𝑇𝑘𝑛 do

6 if ¬𝐴𝑇𝑘𝑛.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (⟨𝑐𝑖 , 𝑖𝑛𝑑𝑖 ⟩) then

7 𝐴𝑇𝑘𝑛 ← 𝐴𝑇𝑘𝑛 ∪ 𝑐𝑖

8 foreach 𝑠𝑖 ∈ 𝑆𝑚𝑡 do

9 if |𝑠𝑖 ∩𝐴𝑇𝑘𝑛 | > 𝑘 then

10 𝐴𝑆𝑚𝑡 ← 𝐴𝑆𝑚𝑡 ∪ 𝑠𝑖

illustrative example (for the sake of space and readability, Figure 6

shows only a subset of SA corresponding to the buggy statement).

(Figure 2-a). As shown in this figure, Self Attention is more success-

ful at capturing the importance of closing parenthesis with respect

to open ones compared to the traditional Attention mechanism.

Algorithm 2 presents SEER’s approach for Attention analysis, i.e.,

analyzing the 𝑆𝐴 matrix to identify which tokens and statements

attended the most in the MUT to predict the test result.

For a given pair of ⟨𝑡𝑖 ,𝑚𝑖 ⟩, Algorithm 2 takes

MUT’s tokens, {𝑐0, . . . , 𝑐𝑛}, Self Attention matrix, 𝑆𝐴 =

[[𝑤00 , . . . ,𝑤0𝑛], . . . , [𝑤𝑛0
, . . . ,𝑤𝑛𝑛]], and Attention threshold

value, 𝑘 , as an input to identify the set of attended tokens,𝐴𝑇𝑘𝑛 and

attended statements 𝐴𝑆𝑚𝑡 , as outputs. To that end, the Algorithm

traverses 𝑆𝐴 matrix row by row (Lines 3-7), identifies the top 𝑘%

most attended tokensÐtop 𝑘 tokens with the highest Attention

weight value (Line 4), and merges the attended tokens per each row

for the entire matrix along with their corresponding indices (Lines

5-7). The outcome of merge is the set of attended tokens, 𝐴𝑇𝑘𝑛.

When merging, considering the indices is specifically important, as

similar tokens at different indices might be attended differently. In

the example of Figure 6, while the token ł(ž appears multiple times

in SA at different indices, its highest attention is in the last index.

Finally, the Algorithm iterates over MUT’s statements,

{𝑠0, . . . , 𝑠𝑚}, and determines the statements that 𝑘% of their to-

kens overlap with the attended tokens in 𝐴𝑇𝑘𝑛 (Lines 8-10). Such

statements indicate the buggy statements in cases that the predicted

label for a ⟨𝑡𝑖 ,𝑚𝑖 ⟩ pair is łfailž. The intuition here is that since the

number of buggy lines is limited, according to the Generalized Pi-

geonhole Principle [10], there is at least one statement with more

than 𝑘% tokens among attended tokens 𝐴𝑇𝑘𝑛.

4.4.2 Embedding Analysis. SEER relies on visualization techniques

to validate the separation of the buggy and correct MUT represen-

tations in the embedding space. Given the high dimensionality of

embedding vectors, however, the first step in the embedding analy-

sis is reducing the dimension of representations. Dimensionality

reduction algorithms such as PCA [53], LDA [70], and tSNE [29]

Latent Discriminant Axis

Figure 7: The intuition behind LDA dimensionality reduction

concentrate on placing dissimilar data points far apart in a lower

dimension representation.

Among the most popular dimensionality reduction algorithms,

SEER uses Linear Discriminant Analysis (LDA), as it recognizes the

class labels and maximizes the separation between classes during

the dimensionality reduction. Figure 7 shows the intuition behind

how LDA performs high-dimensionality reduction. The scattered

plots represent the distribution of buggy (yellow) and correct (blue)

MUTs in high-dimensional embedding space, and the curves repre-

sent that of in the lower dimension. As demonstrated by Figure 7,

if the distributions of reduced-dimension instances of two classes

overlap, they are not separated correctly in the higher dimension.

Otherwise, the instances of buggy and correct classes are separated

in the high-dimensional embedding space.

5 EVALUATION

To evaluate effectiveness of SEER, we investigate the following

research questions:

RQ1: Effectiveness. How effective are the proposed techniques in

predicting accurate passing or failing test labels? What type of bugs

the proposed oracle can detect, and what bugs are harder for the

oracle to detect?

RQ2: Generalization. To what extent the proposed technique can

predict test labels for the Java projects it has not been trained on?

RQ3: Interpretation. Can embedding truly distinguish between the

representation of MUTs for passing and failing <test,MUT> pairs?

What features impact the oracle’s decision?

RQ4: Performance. What are the performance characteristics of

the proposed technique?

5.1 Experimental Setup

We will explain the details of our experimental setup for the sake

of reproducibility. Moroever, we have made all artifacts of SEER

publicly available on GitHub [2].

5.1.1 Dataset: Table 1 shows details about the properties of the

dataset used for training, validation, and testing of SEER. Our

dataset is built on top of Defects4J [1], which consists of 835 bugs

in 17 widely-used Java projects. In addition to the data collected

from Defects4J, we also augmented the dataset with higher-order

mutants and automatically generated Randoop [51] tests. The for-

mer helps diversify the bugs in the dataset, and the latter generates

tests that either pass or fail on the newly added bugs. Finally, we

75

Perfect Is the Enemy of Test Oracle ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 1: Properties of the dataset.

Projects # Bugs # Mutants

Dataset

#Tests

#Pass, #Fail (Contribution%)

Defects4J Higher-order Mutants

Developer Tests Randoop Tests Developer Tests Randoop Tests

Pass # Fail # Pass # Fail # Pass # Fail # Pass # Fail

Compress 47 24,322 30,753 (30.26%) 1,214 22 2,965 2230 385 265 192 23,480

Lang 64 12,824 15,130 (14.89%) 702 59 1,249 296 397 509 1,124 10,794

Chart 26 4,313 14,901 (14.66%) 248 37 5,316 4987 154 109 229 3,821

Math 106 9,488 13,580 (13.36%) 1,685 91 1,584 732 732 814 546 7,396

Codec 18 8,973 10,210 (10.05%) 271 11 648 307 375 54 93 8,451

Closure 174 1,615 3,170 (3.12%) 1,431 8 113 3 768 76 49 722

JacksonDatabind 112 581 2,818 (2.77%) 2,133 27 77 0 410 94 42 35

Time 26 203 2,415 (2.38%) 1,765 39 255 153 84 70 18 31

Jsoup 93 677 2,134 (2.1%) 925 57 458 17 125 234 277 41

Cli 39 913 1,612 (1.59%) 348 10 292 49 106 75 371 361

Csv 16 1,166 1,582 (1.56%) 327 6 83 0 297 2 23 844

JacksonCore 26 941 1,420 (1.4%) 331 15 105 28 320 163 136 322

Gson 18 531 1,386 (1.36%) 678 15 93 69 295 92 144 0

JxPath 22 143 314 (0.31%) 93 1 74 3 0 1 105 37

Mockito 38 0 100 (0.1%) 56 39 5 0 0 0 0 0

JacksonXml 6 49 81 (0.08%) 19 1 9 3 28 12 2 7

Collections 4 0 7 (0.01%) 4 1 2 0 0 0 0 0

Total 835 66,739 101,613 (100%) 12,230 439 13,328 8,877 4,476 2,570 3,351 56,342

removed all the assert statements from the developer-written and

automatically generated tests to avoid bias in learning from them.

As shown in Table 1, the final augmented dataset consists of

33, 385 passing pairs and 68, 228 failing pairs of ⟨𝑡𝑖 ,𝑚𝑖 ⟩, making a

total of 101, 613 ⟨𝑡𝑖 ,𝑚𝑖 ⟩ pairs in the dataset. For Phase 1 training,

we construct ⟨𝑡𝑖 ,𝑚𝑖+,𝑚𝑖−⟩ tuples by merging passing and failing

⟨𝑡𝑖 ,𝑚𝑖 ⟩ pairs for common tests. That is , for a given test 𝑡𝑖 , we find

all the𝑚 passing pairs and 𝑛 failing pairs of ⟨𝑡𝑖 ,𝑚𝑖 ⟩. If𝑚 and 𝑛 are

non-zero, we get total𝑚 × 𝑛 tuples of ⟨𝑡𝑖 ,𝑚𝑖+,𝑚𝑖−⟩. This provides

us with 20, 759 tuples of ⟨𝑡𝑖 ,𝑚𝑖+,𝑚𝑖−⟩ for Phase 1 training, divided

into 90% training, 5% validation, and 5% testing instances. For Phase

2 training, we similarly divided the original dataset with 101, 613

instances represented by Table 1.

5.1.2 Learning Module Configuration: We implemented SEER’s

Learning Module using PyTorch [54] open-source library. Multiple

factors can affect the neural models’ learning process and final

performance. For the loss function, which determines how well

the algorithm approaches learning from the training data, we used

Margin Ranking Loss (MRL) in Phase 1 training andWeighted Cross-

Entropy Loss (WCEL) in Phase 2 training. MRL has been shown to

outperform Cross-Entropy Loss in learning the embeddings and

putting data instances of the same target class closer to each other

than instances from other classes [30]. Since our embedding goal

is similar, i.e., to put passing pairs of ⟨𝑡𝑖 ,𝑚𝑖 ⟩ closer to each other

compared to failing ones, MRL was a reasonable loss function for

learning the MUT and test embeddings.

For Phase 2 training, we chose Weighted Cross-Entropy Loss

rather than Cross-Entropy Loss, which is commonly used in classifi-

cation problems, since our dataset has more failing pairs of ⟨𝑡𝑖 ,𝑚𝑖 ⟩

compared to passing pairs. To enhance the performance, we uti-

lize AdamW optimizer [44], which has been shown to outperform

Adam optimizer [41] to update the network weights and minimize

this loss function iteratively.

The other factors that affect the model’s performance are hyper-

parameters and overfitting. We followed a guided hyperparameter

tuning to find a configuration for the model that results in the best

performance on the validation data. One of the most important

hyperparameters is the learning rate, which controls how much to

change the model in response to the estimated error each time the

model updates weights. Choosing the learning rate is challenging

as a value too small may result in a long training process that could

get stuck, whereas a larger value may result in an unstable training

process. The learning rate of SEER’s Learning Module for Phase 1

and Phase 2 training are 1.34𝑒−4 and 1.34𝑒−6, respectively. The dif-

ference in learning rates is because Phase 2 learning is incremental

compared to Phase 1, and a similar learning rate results in large,

i.e., NaN, loss function values. Furthermore, we used 10-fold cross-

validation to avoid overfitting and implemented early-stopping

criteria to terminate the training. That is, we repeated the training/-

validation for 10 times on different training and validation sets and

chose the model that achieved the best performance. To automati-

cally terminate the learning, our patience level was 5 epochs, i.e., if

the validation loss of the model did not improve in 5 consecutive

epochs, we assumed that learning had reached an optimum level.

5.2 RQ1: Effectiveness

For this research question, we divided 101, 613 pairs of ⟨𝑇,𝐶, 𝐹 ⟩

instances in our dataset into 90% training, 5% validation, and 5%

testing instances. To that end, we downsampled such instances for

each project by 90%, and used the remaining if possible. The only

exception was the Collections project, which we included its few

instances only in the training set. We select accuracy, precision,

recall, and F1 score as metrics to measure the effectiveness of SEER

in predicting correct labels. Table 2 shows the result for this ex-

periment under łSEER with embeddingž columns. These results

are obtained through a 10-fold cross-validation, i.e., downsampling

repeated 10 times.

76

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand

Table 2: Effectiveness and Generalization of SEER in predicting test

labels. TP, FP, TN, and FN stands for True Positive, False Positive,

True Negative, and False Negative, respectively.

Subjects
SEER with embedding

Pass

TP (%), FN (%)

Fail

TN (%), FP (%)

Compress 92.53%, 7.47% 98.18%, 1.82%

Lang 81.07%, 18.93% 92.6%, 7.4%

Chart 94.74%, 5.26% 88.03%, 11.97%

Math 93.83%, 6.17% 89.98%, 10.02%

Codec 79.12%, 20.88% 99.58%, 0.42%

Closure 98.36%, 1.64% 80.56%, 19.44%

JacksonDatabind* 100%, 0% 30.77%, 69.23%

Time* 100%, 0% 0%, 100%

Jsoup* 98.81%, 1.19% 0%, 100%

Cli 96.23%, 3.77% 60%, 40%

Csv 94.59%, 5.41% 98.21%, 1.79%

JacksonCore 97.06%, 2.94% 41.94%, 58.06%

Gson* 100%, 0% 66.67%, 33.33%

JxPath* 100%, 0% 25%, 75%

Mockito* 100%, 0% 0%, 100%

JacksonXml* 100%, 0% 0%, 100%

Collections* N/A, N/A N/A, N/A

Total 93.63%, 6.37% 92.77%, 7.23%

Each row in Table 2 shows one of our subject projects and the

percentage of instances they have correctly predicted for different

versions of SEER. These results confirm the original implemen-

tation of SEER illustrated in Figure 5 can effectively predict

passing and failing labels for the test suite of each subject

program, achieving 93% accuracy, 86% precision, 94% recall,

and 90% F1 score. Despite an overall good performance, SEER did

not perform well on some projects (those marked by asterisks in Ta-

ble 2. Our investigation showed that due to the low contribution of

these projects to the dataset, the test data instances from them were

either none, e.g., Collections project, or very few. Consequently,

the effect size of classification was very large.

False Negatives are not big issues in our proposed technique,

as SEER is interpretable and developers can quickly check the At-

tended tokens to verify the False Negative. To understand the rea-

sons for False Positives, we compared the True Negative and False

Positive instances from the following perspectives:

• Test type.The unit tests in our dataset are either developer-written

tests or automatically generated by Randoop. Majority of 𝑡𝑖s for

True Negative instances belonged to Randoop. However, for False

Positives, half of the 𝑡𝑖s are developer-written tests while the

other half are Randoop tests. As a result, there is no significant

correlation between the False Positive instances and test type.

• # Test Tokens. The average number of test tokens for False Positive

instances is 74 compared to 85 for True Negatives, which shows

that SEER performs better when tests are longer. We believe that

this is potentially because the representation of longer tests are

unique compared to shorter tests, making it easier for the model

to predict a correct label for them.

• # MUT tokens. The average number of MUT tokens for False Pos-

itive instances is 89 compared to 131 for True Negatives, which

shows that SEER performs better when MUT’s implementation

has more tokens and statements. Similar to our argument about

test tokens, short MUT sequences carry less semantic informa-

tion, making it harder for the model to predict test results.

• Bug type. SEER correctly predicts the test results for 95% of the

higher order mutants. This ratio for the real bugs from the De-

fects4J dataset is 80%. Given that we found no significant corre-

lation between the number of buggy lines in False Positive and

True Negative instances, we believe this happens because real

bugs are unique. That is, while higher-order mutation injects

bugs at different locations and considers different combinations

of mutation operators, the operators are limited, making it easier

for SEER to learn the bugs that involve those operators. We argue

that this is not a limitation of SEER, but the dataset, which can

be resolved by including more real bugs in the training dataset.

5.3 RQ2: Generalization

In the previous research question, we showed that SEER can ef-

fectively serve as an oracle on the unseen ⟨𝑡𝑖 ,𝑚𝑖 ⟩ pairs from the

projects that were in the training dataset. In this research question,

we go one step forward to investigate how SEER generalizes to

predict test labels for ⟨𝑡𝑖 ,𝑚𝑖 ⟩ pairs, where𝑚𝑖 belongs to a project

that was not in the training data. To that end, we computed the

contribution of each project (column ł# Testsž in Table 1) and di-

vided the dataset into high-contribution projects with contribution

values greater than 10%, and low-contribution projects. We used

all the instances of the projects in the high-contribution dataset for

training and validation. Then, we tested the trained model on the

projects in the low-contribution dataset. For this research question,

we only consider the precision and recall values to evaluate the

performance of SEER, as the low-contribution dataset is highly

imbalanced (passing ⟨𝑡𝑖 ,𝑚𝑖 ⟩ pairs are 3.5× more than failing pairs).

Compared to the original precision and recall values computed

in RQ1 (86% and 93%), the value of SEER’s performance metrics

on unseen projects are 77% (9% ↓) and 82% (9% ↓). Given that un-

seen projects have different statistical distributions compared to

the projects used for training, i.e., different tokens and hence vo-

cabularies, the performance drop is expected due to the Out of

Distribution (OOD) problem [64]. Our further investigation of the

misclassified instances confirmed that the model’s performance

 10 20 30 40 50

100

75

50

25

0

Attention Threshold

%
 D

is
co

ve
re

d
B

ug
gy

 S
ta

te
m

en
t

Figure 8: The percentage of attended buggy statements with respect

to attention threshold

77

Perfect Is the Enemy of Test Oracle ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

public static String encodeBase64String (byte[] binaryData){
 return StringUtils.newStringUtf8(
 encodeBase64(binaryData, true));
}

String

Public static

encodeBase64String(

byte[]

return

StringUtils.newStringUtf8(

binaryData,

true))

;}

binaryData){
St
ri
ng

tr
ue
))

bi
na
ry
Da
ta
){

Figure 9: Visualization of the Self Attention for the method

encodeBase64String in Codec project, demonstrating that SEER has

paid the highest attention to the buggy token, i.e., łtruež

was better on unseen projects, whose vocabularies had a higher

overlap with the vocabularies of the projects used for training SEER,

compared to that of for projects with less overlap in vocabularies.

These results demonstrate that SEER can achieve comparable

performance on unseen projects whose vocabularies overlap

with the projects for training the oracle.

5.4 RQ3: Interpretation

Recall that the goal of SEER’s interpretation is two-fold. First, we

interpret the embedding network to verify if it has correctly learned

to separate the representation of correct and buggy MUTs. More

importantly, we interpret the oracle to identify which features, i.e.,

tokens in the MUT, and which statements were mostly attended

when predicting a label. From this information, we can determine

whether the attended features are relevant to the decision and

whether the model’s performance is valid.

5.4.1 Attention Analysis. Given a threshold number 𝑘 , SEER’s at-

tention analysis algorithm (Algorithm 2) produces a set of top 𝑘%

attended tokens and attended statements in the MUT. To confirm

that SEER has attended to relevant tokens for predicting labels, we

measured the percentage of the buggy statements that are among

attended statements in the MUT. Specifically, we computed this

metric for true negative test instances, i.e., ⟨𝑡𝑖 ,𝑚𝑖 ⟩ pairs for which

the SEER correctly identified to fail. Figure 8 shows the percent-

age of buggy statements that were among the attended statements,

and how this percentage changes in response to the change of

threshold value. These results demonstrate that SEER has indeed

attended to relevant tokens to predict test labels, and even

with a small threshold value of 5%, it can correctly identify

50% of the buggy statements in the subject MUTs. One interest-

ing observation here is that increasing the threshold may not result

in better bug localization. For example, increasing the threshold to

public boolean equals(Object obj){
 if (this == obj)
 return true;
 if (obj == null || getClass() != obj.getClass())
 return true;
 ZipArchiveEntry other = (ZipArchiveEntry) obj;
 if (name == null) {
 if (other.name != null)
 return false;
 } else if (!name.equals(other.name))
 return false;
 return false;
}

bo
ol

ea
n

if ob
j

Re
tu

rn
 t

ru
e

Re
tu

rn
 t

ru
e

ot
he

r

Re
tu

rn
 f

al
se

Re
tu

rn
 f

al
se

Re
tu

rn
 f

al
se

if

boolean

if
obj

Return true

Return true
other

Return false

Return false
Return false

if

Figure 10: Visualization of the Self Attention for themethod equals,

demonstrating that SEER has attended to buggy tokens at multiple

locations

40% or 50% results in non-buggy statements being among the at-

tended statements, decreasing the contribution of buggy statements

among attended statements.

We also manually investigated the heatmap visualization of

the Self Attention matrix for the failing ⟨𝑡𝑖 ,𝑚𝑖 ⟩ pairs to qualita-

tively confirm if SEER has considered relevant tokens to predict

labels. Figure 9 illustrates such case, where the buggy MUT is

encodeBase64String of the Codec project. As shown in Figure 9,

the bug is due to feeding an incorrect argument to encodeBase64

method, i.e., łtruež instead of łfalsež. By looking at the heatmap

visualization of the Self Attention matrix, we can see that SEER has

paid the most attention to the buggy token when predicting the

łfailž label for this test instance (for the sake of space and readability,

we have merged some of the tokens and adjusted the weights in

the heatmap visualization). As another example, where the bug is

more complex and involves multiple tokens or statements, consider

the buggy MUT and its corresponding heatmap 3 visualization of

Self Attention in Figure 10. In this example, the return values of

the two highlighted return statements are incorrect. Looking at the

3The tokens are merged in this heatmap and only the most attended tokens are labeled.

78

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand

 -10 -5 0 5 10

Linear Discriminant Axis

D
is

tri
bu

tio
n

0

0.5

1.5

1

2

2.5 Buggy MUT
Correct MUT

Figure 11: Linear Discriminant Analysis (LDA) results. The yellow

graph represents the distribution of buggyMUTs and the dashed blue

graph represents the distribution of correct MUTs in the reduced

dimension

heatmap, we can see that the tokens of these two statements are

among the most attended tokens to predict the łfailž label.

5.4.2 Embedding Analysis. Figure 11 shows the result of embed-

ding analysis as discussed in Section 4.4.2. The blue and yellow

distributions show the distinction between the embeddings of cor-

rect and buggy MUTs, respectively, after LDA dimensionality re-

duction. As demonstrated by this figure, the distribution of correct

and buggy MUTs are almost distinct in the low-dimension space,

which confirms SEER’s ability to semantically distinguish the

representation of buggy and correct MUTs in the embedding

space. There are some overlapping instances near 𝑥 = 0 between

the correct and buggy MUTs distributions. Such overlap indicates

that the embeddings of a few buggy and correct MUTs are close to

each other in the embedding space with 200 dimensions. By manu-

ally investigating those instances, we realized that they belong to

⟨𝑡𝑖 ,𝑚𝑖 ⟩ pairs that SEER failed to predict a correct label.

5.5 RQ4: Performance

To answer this research question, we evaluated the time required

for Phase 1 and Phase 2 training, as well as the time for testing

the oracle. We ran the experiments on a Tesla T4 GPU with 16GB

GDDR6 memory. For a batch size of 16 ⟨𝑡𝑖 ,𝑚𝑖 ⟩ pairs, a single epoch

took 447 and 1, 745 seconds on average for training Phase 1 and

Phase 2, respectively. With the patience level of five epochs for the

early termination criteria, Phase 1 and Phase 2 training took 22

and 30 epochs to complete, respectively, resulting in a total of 14

hours of training. Given that the SEER is generalizable, the one-time

training of the model is reasonable. After training, it takes SEER

only 6.5 milliseconds on average to predict the passing or failing

label for a given pair of ⟨𝑡𝑖 ,𝑚𝑖 ⟩.

6 RELATED WORK

State-of-the-art test oracle automation techniques can be divided

into three main categories: Implicit, Specified, and Derived oracles.

Implicit oracle relies on some implicit knowledge to identifywhether

a test passes or fails. Examples of such implicit knowledge are buffer

overflow almost always yields an error, excessive CPU usage is a

likely indicator of server disruptions, and unnecessary battery usage

is evidence of energy defects in mobile apps. While quite effective

and automated, implicit oracles can only determine the presence of

limited categories of bugs.

Specified oracle determines the expected output of test execution

and compares it with the actual output to decide whether a test

passes or fails. To identify the expected output, these oracles require

existence of formal specifications [18, 24, 28, 36, 38, 55] or contracts

(pre-and post-conditions) [5, 9, 16, 17, 78] for the system under test.

The performance and usability of such oracle highly depend on

the availability, completeness, and quality of specifications. How-

ever, for many ever-changing software systems, specifications and

contracts either do not exist or fall out of date. Even if automated

techniques generate specifications, they are usually quite abstract,

and inferring concrete test outputs from them is not guaranteed or

is imprecise [6, 27]. State-of-the-art ML-enabled techniques allevi-

ate such limitations by predicting meaningful specifications [48] or

assert statements [72, 77, 80]. Compared to SEER, these techniques

evaluate a limited set of properties related to program behavior

only at a certain point the assertions [18].

Derived oracle decides the passing or failure of a test by distin-

guishing the system’s correct from incorrect behavior rather than

knowing the exact output. The correct and incorrect behavior can

be (1) inferred from some meta-data such as execution logs [3, 7, 8,

22, 23, 26, 31, 42, 47, 50, 56, 63, 65, 66, 75]; (2) provided as properties

of the intended functionality (metamorphic relations) [4, 11, 12, 19ś

21, 43, 46, 49, 57ś62, 68, 69, 71, 73, 83, 85, 89, 91, 92]; or (3) checked

against other versions of the software [14, 32, 67, 81, 82, 86]. De-

rived oracles are pragmatic, but are generally incomplete, i.e., can

only identify test outputs for a subset of inputs. SEER, while consid-

ered as a derived oracle, alleviates this problem through a domain-

specific embedding, i.e., semantically separating the buggy and

correct code in the embedding space with respect to test results.

Consequently, the neural model that serves as the oracle considers

that general knowledge to predict a passing or failing verdicts.

7 CONCLUDING REMARKS

Test oracle automation has been one of the most challenging prob-

lems in the software engineering community, yet it has received less

attention compared to test input generation. This paper proposed

SEER, a novel DL-enabled technique to move one step forward in

advancing automated test oracle constructions. SEER predicts a

passing or failing verdict for a given pair of ⟨𝑡𝑖 ,𝑚𝑖 ⟩ by learning

the semantic correlation between inputs and outputs from a high-

quality and diverse dataset. Our experimental results show that the

learned oracle is accurate and efficient in predicting test results,

and generalizable to the projects it has not seen during training.

Currently, we are considering several directions for future work.

Based on the promising results of our produced domain-specific

representations for code and tests, we will explore its application in

other software analysis tasks such as vulnerability detection, bug

localization, and program repair. Also, we are planning to expand

SEER to system tests. System tests are more complex and bigger

than unit tests, which may entail changing the SEER’s architec-

ture to Graph Neural Networks (GNN) to better capture the code

semantics and representations.

79

Perfect Is the Enemy of Test Oracle ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

REFERENCES
[1] 2021. Defects4J dataset. https://github.com/rjust/defects4j.
[2] 2022. SEER Artifacts. https://github.com/Intelligent-CAT-Lab/SEER.
[3] Shay Artzi Michael D Ernst Adam and Kiezun Carlos Pacheco Jeff H Perkins.

2006. Finding the Needles in the Haystack: Generating Legal Test Inputs for
Object-Oriented Programs. and Object-Oriented Systems (2006), 27.

[4] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Erik
Meijer, et al. 2021. Testing Web Enabled Simulation at Scale Using Metamorphic
Testing. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 140ś149.

[5] Wladimir Araujo, Lionel C Briand, and Yvan Labiche. 2011. Enabling the runtime
assertion checking of concurrent contracts for the Java modeling language. In
2011 33rd International Conference on Software Engineering (ICSE). IEEE, 786ś795.

[6] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2014.
The oracle problem in software testing: A survey. IEEE transactions on software
engineering 41, 5 (2014), 507ś525.

[7] Antonia Bertolino, Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli.
2009. Automatic synthesis of behavior protocols for composable web-services. In
Proceedings of the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering.
141ś150.

[8] Dirk Beyer, Thomas AHenzinger, Ranjit Jhala, and RupakMajumdar. 2005. Check-
ing memory safety with Blast. In International Conference on Fundamental Ap-
proaches to Software Engineering. Springer, 2ś18.

[9] Lionel C Briand, Yvan Labiche, and Hong Sun. 2003. Investigating the use of
analysis contracts to improve the testability of object-oriented code. Software:
Practice and Experience 33, 7 (2003), 637ś672.

[10] Richard A Brualdi. 1977. Introductory combinatorics. Pearson Education India.
[11] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, TH Tse,

and Zhi Quan Zhou. 2018. Metamorphic testing: A review of challenges and
opportunities. ACM Computing Surveys (CSUR) 51, 1 (2018), 1ś27.

[12] Tsong Yueh Chen, Fei-Ching Kuo, Wenjuan Ma, Willy Susilo, Dave Towey, Jeffrey
Voas, and Zhi Quan Zhou. 2016. Metamorphic testing for cybersecurity. Computer
49, 6 (2016), 48ś55.

[13] Tsong Yueh Chen, F-C Kuo, TH Tse, and Zhi Quan Zhou. 2003. Metamorphic
testing and beyond. In Eleventh Annual International Workshop on Software Tech-
nology and Engineering Practice. IEEE, 94ś100.

[14] Tsong Yueh Chen, Pak-Lok Poon, and Xiaoyuan Xie. 2016. METRIC: METamor-
phic Relation Identification based on the Category-choice framework. Journal of
Systems and Software 116 (2016), 177ś190.

[15] Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short-term memory-
networks for machine reading. arXiv preprint arXiv:1601.06733 (2016).

[16] Yoonsik Cheon. 2007. Abstraction in assertion-based test oracles. In Seventh
International Conference on Quality Software (QSIC 2007). IEEE, 410ś414.

[17] Yoonsik Cheon and Gary T Leavens. 2002. A simple and practical approach to
unit testing: The JML and JUnit way. In European Conference on Object-Oriented
Programming. Springer, 231ś255.

[18] David Coppit and Jennifer M Haddox-Schatz. 2005. On the use of specification-
based assertions as test oracles. In 29th Annual IEEE/NASA Software Engineering
Workshop. IEEE, 305ś314.

[19] Junhua Ding, Xiaojun Kang, and Xin-Hua Hu. 2017. Validating a deep learning
framework bymetamorphic testing. In 2017 IEEE/ACM 2nd InternationalWorkshop
on Metamorphic Testing (MET). IEEE, 28ś34.

[20] Alastair F Donaldson and Andrei Lascu. 2016. Metamorphic testing for (graphics)
compilers. In Proceedings of the 1st international workshop on metamorphic testing.
44ś47.

[21] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M Rao, RP Ja-
gadeesh Chandra Bose, Neville Dubash, and Sanjay Podder. 2018. Identifying
implementation bugs in machine learning based image classifiers using metamor-
phic testing. In Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 118ś128.

[22] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE transactions on software engineering 27, 2 (2001), 99ś123.

[23] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35ś45.

[24] Xin Feng, David Lorge Parnas, TH Tse, and Tony O’Callaghan. 2011. A compari-
son of tabular expression-based testing strategies. IEEE Transactions on Software
Engineering 37, 5 (2011), 616ś634.

[25] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416ś419.

[26] Kambiz Frounchi, Lionel C Briand, Leo Grady, Yvan Labiche, and Rajesh Sub-
ramanyan. 2011. Automating image segmentation verification and validation

by learning test oracles. Information and Software Technology 53, 12 (2011),
1337ś1348.

[27] Marie-Claude Gaudel. 2001. Testing from formal specifications, a generic ap-
proach. In International Conference on Reliable Software Technologies. Springer,
35ś48.

[28] Gregory Gay, Sanjai Rayadurgam, and Mats PE Heimdahl. 2014. Improving the
accuracy of oracle verdicts through automated model steering. In Proceedings of
the 29th ACM/IEEE international conference on Automated software engineering.
527ś538.

[29] Andrej Gisbrecht, Alexander Schulz, and Barbara Hammer. 2015. Parametric
nonlinear dimensionality reduction using kernel t-SNE. Neurocomputing 147
(2015), 71ś82.

[30] Raul Gomez, Lluis Gomez, Jaume Gibert, and Dimosthenis Karatzas. 2019. Self-
supervised learning from web data for multimodal retrieval. In Multimodal Scene
Understanding. Elsevier, 279ś306.

[31] Roland Groz, Keqin Li, Alexandre Petrenko, and Muzammil Shahbaz. 2008. Mod-
ular system verification by inference, testing and reachability analysis. In Testing
of software and communicating systems. Springer, 216ś233.

[32] Zhongxian Gu, Earl T Barr, David J Hamilton, and Zhendong Su. 2010. Has
the bug really been fixed?. In 2010 ACM/IEEE 32nd International Conference on
Software Engineering, Vol. 1. IEEE, 55ś64.

[33] Shivani Gupta and Atul Gupta. 2019. Dealing with noise problem in machine
learning data-sets: A systematic review. Procedia Computer Science 161 (2019),
466ś474.

[34] Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David
Bieber. 2019. Global relational models of source code. In International conference
on learning representations.

[35] Reyhaneh Jabbarvand, Forough Mehralian, and Sam Malek. 2020. Automated
construction of energy test oracles for Android. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 927ś938.

[36] Daniel Jackson. 2012. Software Abstractions: logic, language, and analysis. MIT
press.

[37] Yue Jia and Mark Harman. 2008. Constructing subtle faults using higher order
mutation testing. In 2008 Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation. IEEE, 249ś258.

[38] Ying Jin and David Lorge Parnas. 2010. Defining the meaning of tabular mathe-
matical expressions. Science of Computer Programming 75, 11 (2010), 980ś1000.

[39] Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for
generating image descriptions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 3128ś3137.

[40] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012.
Leakage in data mining: Formulation, detection, and avoidance. ACMTransactions
on Knowledge Discovery from Data (TKDD) 6, 4 (2012), 1ś21.

[41] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[42] Keqin Li, Roland Groz, and Muzammil Shahbaz. 2006. Integration testing of
components guided by incremental state machine learning. In Testing: Academic
& Industrial Conference-Practice And Research Techniques (TAIC PART’06). IEEE,
59ś70.

[43] Xuanyi Lin, Michelle Simon, and Nan Niu. 2018. Exploratory metamorphic testing
for scientific software. Computing in science & engineering 22, 2 (2018), 78ś87.

[44] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[45] Chunyan Ma, Shaoying Liu, Jinglan Fu, and Tao Zhang. 2021. Test Oracle Gener-
ation Based on BPNN by Using the Values of Variables at Different Breakpoints
for Programs. International Journal of Software Engineering and Knowledge Engi-
neering 31, 10 (2021), 1469ś1494.

[46] Pingchuan Ma, Shuai Wang, and Jin Liu. 2020. Metamorphic Testing and Certified
Mitigation of Fairness Violations in NLP Models.. In IJCAI. 458ś465.

[47] Maik Merten, Falk Howar, Bernhard Steffen, Patrizio Pellicione, and Massimo
Tivoli. 2012. Automated inference of models for black box systems based on
interface descriptions. In International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation. Springer, 79ś96.

[48] Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. 2022. Fuzzing Class
Specifications. arXiv preprint arXiv:2201.10874 (2022).

[49] Christian Murphy, Gail E Kaiser, and Lifeng Hu. 2008. Properties of machine
learning applications for use in metamorphic testing. (2008).

[50] Carlos Pacheco and Michael D Ernst. 2005. Eclat: Automatic generation and clas-
sification of test inputs. In European Conference on Object-Oriented Programming.
Springer, 504ś527.

[51] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion. 815ś816.

[52] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345ś1359.

[53] Matthew Partridge and Rafael A Calvo. 1998. Fast dimensionality reduction and
simple PCA. Intelligent data analysis 2, 3 (1998), 203ś214.

80

https://github.com/rjust/defects4j
https://github.com/Intelligent-CAT-Lab/SEER

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024ś8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[55] Dennis K Peters and David Lorge Parnas. 2002. Requirements-based monitors
for real-time systems. IEEE Transactions on Software Engineering 28, 2 (2002),
146ś158.

[56] Sam Ratcliff, David R White, and John A Clark. 2011. Searching for invariants
using genetic programming and mutation testing. In Proceedings of the 13th
annual conference on Genetic and evolutionary computation. 1907ś1914.

[57] Sergio Segura, Amador Durán, Ana B Sánchez, Daniel Le Berre, Emmanuel Lonca,
and Antonio Ruiz-Cortés. 2015. Automated metamorphic testing of variability
analysis tools. Software Testing, Verification and Reliability 25, 2 (2015), 138ś163.

[58] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A
survey on metamorphic testing. IEEE Transactions on software engineering 42, 9
(2016), 805ś824.

[59] Sergio Segura, Robert M Hierons, David Benavides, and Antonio Ruiz-Cortés.
2010. Automated test data generation on the analyses of feature models: A
metamorphic testing approach. In 2010 Third International Conference on Software
Testing, Verification and Validation. IEEE, 35ś44.

[60] Sergio Segura, Robert M Hierons, David Benavides, and Antonio Ruiz-Cortés.
2011. Automated metamorphic testing on the analyses of feature models. Infor-
mation and Software Technology 53, 3 (2011), 245ś258.

[61] Sergio Segura, José A Parejo, Javier Troya, and Antonio Ruiz-Cortés. 2017. Meta-
morphic testing of RESTful web APIs. IEEE Transactions on Software Engineering
44, 11 (2017), 1083ś1099.

[62] Sergio Segura, Dave Towey, Zhi Quan Zhou, and Tsong Yueh Chen. 2018. Meta-
morphic testing: Testing the untestable. IEEE Software 37, 3 (2018), 46ś53.

[63] Seyed Reza Shahamiri, Wan MN Wan-Kadir, Suhaimi Ibrahim, and Siti
Zaiton Mohd Hashim. 2012. Artificial neural networks as multi-networks auto-
mated test oracle. Automated Software Engineering 19, 3 (2012), 303ś334.

[64] Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and
Peng Cui. 2021. Towards out-of-distribution generalization: A survey. arXiv
preprint arXiv:2108.13624 (2021).

[65] Rishabh Singh, Dimitra Giannakopoulou, and Corina Păsăreanu. 2010. Learning
component interfaces withmay andmust abstractions. In International Conference
on Computer Aided Verification. Springer, 527ś542.

[66] Matt Staats, Shin Hong, Moonzoo Kim, and Gregg Rothermel. 2012. Under-
standing user understanding: determining correctness of generated program
invariants. In Proceedings of the 2012 International Symposium on Software Testing
and Analysis. 188ś198.

[67] Chang-Ai Sun, An Fu, Pak-Lok Poon, Xiaoyuan Xie, Huai Liu, and Tsong Yueh
Chen. 2019. METRIC++: A Metamorphic Relation Identification Technique Based
on Input Plus Output Domains. IEEE Transactions on Software Engineering 47, 9
(2019), 1764ś1785.

[68] Liqun Sun and Zhi Quan Zhou. 2018. Metamorphic testing for machine trans-
lations: MT4MT. In 2018 25th Australasian Software Engineering Conference
(ASWEC). IEEE, 96ś100.

[69] Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. 2010. An automatic testing
approach for compiler based on metamorphic testing technique. In 2010 Asia
Pacific Software Engineering Conference. IEEE, 270ś279.

[70] Maurice M Tatsuoka and David V Tiedeman. 1954. Chapter iv: Discriminant
analysis. Review of Educational Research 24, 5 (1954), 402ś420.

[71] Sandro Tolksdorf, Daniel Lehmann, and Michael Pradel. 2019. Interactive meta-
morphic testing of debuggers. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. 273ś283.

[72] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. 2020.
Generating Accurate Assert Statements for Unit Test Cases using Pretrained

Transformers. arXiv preprint arXiv:2009.05634 (2020).
[73] Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. 2020. TestMC: testing

model counters using differential and metamorphic testing. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
709ś721.

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000ś6010.

[75] Neil Walkinshaw and Kirill Bogdanov. 2008. Inferring finite-state models with
temporal constraints. In 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering. IEEE, 248ś257.

[76] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. 2020. Learning semantic
program embeddings with graph interval neural network. Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020), 1ś27.

[77] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On learning meaningful assert statements for unit test cases. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing. 1398ś1409.

[78] Yi Wei, Carlo A Furia, Nikolay Kazmin, and Bertrand Meyer. 2011. Inferring
better contracts. In Proceedings of the 33rd International Conference on Software
Engineering. 191ś200.

[79] Gary M Weiss and Haym Hirsh. 2000. A quantitative study of small disjuncts.
AAAI/IAAI 2000, 665-670 (2000), 15.

[80] Robert White and Jens Krinke. 2020. ReAssert: Deep Learning for Assert Genera-
tion. arXiv preprint arXiv:2011.09784 (2020).

[81] Tao Xie. 2006. Augmenting automatically generated unit-test suites with regres-
sion oracle checking. In European Conference on Object-Oriented Programming.
Springer, 380ś403.

[82] Tao Xie and David Notkin. 2005. Checking inside the black box: Regression
testing by comparing value spectra. IEEE Transactions on software Engineering
31, 10 (2005), 869ś883.

[83] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. 2011. Testing and validating machine learning classifiers by
metamorphic testing. Journal of Systems and Software 84, 4 (2011), 544ś558.

[84] Ran Xu, Caiming Xiong, Wei Chen, and Jason Corso. 2015. Jointly modeling
deep video and compositional text to bridge vision and language in a unified
framework. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 29.

[85] Shin Yoo. 2010. Metamorphic testing of stochastic optimisation. In 2010 Third In-
ternational Conference on Software Testing, Verification, and Validation Workshops.
IEEE, 192ś201.

[86] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183ś200.

[87] Jie Zhang, Junjie Chen, Dan Hao, Yingfei Xiong, Bing Xie, Lu Zhang, and Hong
Mei. 2014. Search-based inference of polynomial metamorphic relations. In
Proceedings of the 29th ACM/IEEE international conference on Automated software
engineering. 701ś712.

[88] Lingming Zhang, Guowei Yang, Neha Rungta, Suzette Person, and Sarfraz Khur-
shid. 2014. Feedback-driven dynamic invariant discovery. In Proceedings of the
2014 International Symposium on Software Testing and Analysis. 362ś372.

[89] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 132ś142.

[90] Pengcheng Zhang, Xuewu Zhou, Patrizio Pelliccione, and Hareton Leung. 2017.
RBF-MLMR: A multi-label metamorphic relation prediction approach using RBF
neural network. IEEE access 5 (2017), 21791ś21805.

[91] Zhi Quan Zhou and Liqun Sun. 2019. Metamorphic testing of driverless cars.
Commun. ACM 62, 3 (2019), 61ś67.

[92] Zhi Quan Zhou, Shaowen Xiang, and Tsong Yueh Chen. 2015. Metamorphic test-
ing for software quality assessment: A study of search engines. IEEE Transactions
on Software Engineering 42, 3 (2015), 264ś284.

81

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Abstract
	1 Introduction
	2 Illustrative Example
	3 Framework Overview
	4 SEER
	4.1 Method Extractor
	4.2 Learning Module
	4.3 Dataset Curation
	4.4 Interpretation

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Effectiveness
	5.3 RQ2: Generalization
	5.4 RQ3: Interpretation
	5.5 RQ4: Performance

	6 Related Work
	7 Concluding Remarks
	References

